Skip to main content
Log in

Experiment to measure the Lamb shift in muonic hydrogen

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The contribution of the root mean square (RMS) proton charge radius to the Lamb shift (2S–2P energy difference) in muonic hydrogen (μp) amounts to 2%. Apart from the uncertainty on this charge radius, theory predicts the Lamb shift with a precision on the ppm level. We are going to measure ΔE (2 S1/2(F=1)–2 P3/2(F=2)) in a laser resonance experiment to a precision of 30 ppm (i.e., 10% of the natural linewidth) and to deduce the RMS proton charge radius with 10−3 relative accuracy, 20 times more precise than presently known.

The most important requirement for the feasibility of such an experiment, namely the availability of a sufficient amount of long lived metastable μp atoms in the 2S state, has been investigated in a recent experiment at PSI. Our analysis shows that in the order of one percent of all muons stopped in low pressure hydrogen gas form a long lived μp(2S) with a lifetime of the order of 1 μs.

The technical realization of our experiment involves a new high intensity low energy muon beam, an efficient low energy muon entrance detector, a randomly triggered 3 stage laser system providing the 0.5 mJ, 7 ns laser pulses at 6.02 μm wavelength, and a combination of a xenon gas proportional scintillation chamber (GPSC) and a microstrip gas chamber (MSGC) with a CsI coated surface to detect the 2 keV X rays from theμp(2P → 1S) transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W.E. Lamb and R.C. Retherford, Phys. Rev. 72 (1947) 971.

    Article  Google Scholar 

  2. S. Bourzeix et al., Phys. Rev. Lett. 76 (1996) 384.

    Article  ADS  Google Scholar 

  3. Th. Udem et al., Phys. Rev. Lett. 79 (1998) 2646.

    Article  ADS  Google Scholar 

  4. C. Schwob et al., Phys. Rev. Lett. 82 (1999) 4960.

    Article  ADS  Google Scholar 

  5. L.N. Hand, Rev. Modern. Phys. 35 (1963) 335.

    Article  ADS  Google Scholar 

  6. G.G. Simon et al., Nuclear Phys. A 333 (1980) 381.

    Article  ADS  Google Scholar 

  7. C.W. Wong, Internat. J. Modern Phys. 3 (1994) 821.

    ADS  Google Scholar 

  8. P. Mergell et al., Nuclear Phys. A 596 (1996) 367.

    Article  ADS  Google Scholar 

  9. S.G. Karshenboim, Report MPQ230, Max Planck Institut für Quantenoptik, Garching (1998).

    Google Scholar 

  10. K. Pachucki, Phys. Rev. A 53 (1996) 2092.

    Article  ADS  Google Scholar 

  11. T. Kinoshita and M. Nio, Phys. Rev. Lett 82 (1999) 3240.

    Article  ADS  Google Scholar 

  12. H. Anderhub et al., Phys. Lett. B 71 (1977) 443.

    Article  ADS  Google Scholar 

  13. P.O. Egan et al., Phys. Rev. A 23 (1981) 1152.

    Article  ADS  Google Scholar 

  14. H. Anderhub et al., Phys. Lett. B 143 (1984) 65.

    Article  ADS  Google Scholar 

  15. G. Carboni and G. Fiorentini, Nuovo Cimento B 39 (1977) 281.

    Article  ADS  Google Scholar 

  16. A. Adamczak et al., At. Data Nucl. Data Tables 62 (1996) 255.

    Article  ADS  Google Scholar 

  17. PSI, Laser spectroscopy of the Lamb shift in muonic hydrogen, Proposal R-98-03.1.

  18. PSI, Annual Report, General Volume (1997) 32.

  19. P. de Cecco et al., Nucl. Instrum. Methods A 394 (1997) 287.

    Article  ADS  Google Scholar 

  20. P. Rabinowitz et al., IEEE J. Quant. Electr. 22 (1986) 797.

    Article  ADS  Google Scholar 

  21. J. Böcklin et al., Nucl. Instrum. Methods 176 (1980) 105.

    Article  ADS  Google Scholar 

  22. H.P. von Arb et al., Nucl. Instrum. Methods 207 (1983) 429.

    Article  Google Scholar 

  23. J.F.C.A. Veloso et al., Nucl. Instrum. Methods A 422 (1999) 273.

    Article  ADS  Google Scholar 

  24. J.F.C.A. Veloso et al., IEEE Trans. Nucl. Sci. 44 (1997) 73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pohl, R., Biraben, F., Conde, C. et al. Experiment to measure the Lamb shift in muonic hydrogen. Hyperfine Interactions 127, 161–166 (2000). https://doi.org/10.1023/A:1012679114531

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012679114531

Navigation