Skip to main content
Log in

Nuclear structure studies at ISOLDE and their impact on the astrophysical r-process

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The focus of the present review is the production of the heaviest elements in nature via the r-process. A correct understanding and modeling requires the knowledge of nuclear properties far from stability and a detailed prescription of the astrophysical environment. Experiments at CERN/ISOLDE have played a pioneering role in exploring the characteristics of nuclear structure in terms of masses and β-decay properties. Initial examinations paid attention to far unstable nuclei with magic neutron numbers related to r-process peaks, while present activities are centered on the evolution of shell effects with the distance from the valley of stability. We first show in site-independent applications the effect of both types of nuclear properties on r-process abundances. Then, we explore the results of calculations related to two different “realistic”astrophysical sites, (i) the supernova neutrino wind and (ii) neutron star mergers. We close with a list of remaining theoretical and experimental challenges needed to overcome for a full understanding of the nature of the r-process, and the role CERN/ISOLDE can play in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E.M. Burbidge et al., Rev. Modern Phys. 29 (1957) 547.

    ADS  Google Scholar 

  2. A.G.W. Cameron, Atomic Energy of Canada, Ltd., CRL-41 (1957).

  3. P.A. Seeger et al., Ap. J. Suppl. 97 (1965) 121.

    ADS  Google Scholar 

  4. A.G.W. Cameron et al., CERN 70(30) (1970) 735.

    Google Scholar 

  5. W. Hillebrandt, Space Sci. Rev. 21 (1978) 639.

    ADS  Google Scholar 

  6. G.J. Mathews and R.A. Ward, Rep. Progr. Phys. 48 (1985) 1371.

    ADS  Google Scholar 

  7. J.J. Cowan et al., Phys. Rep. 208 (1991) 267.

    ADS  Google Scholar 

  8. F.-K. Thielemann et al., in: Nuclear and Particle Astrophysics (Cambridge Univ. Press, Cambridge, 1998) pp. 27;available via WWW at URL: http://xxx.lanl.gov/astro-ph/9802077.

    Google Scholar 

  9. G. Wallerstein et al., Rev. Modern Phys. 69 (1997) 995.

    ADS  Google Scholar 

  10. F. Käppeler et al., Ann. Rev. Nucl. Part. Sci. 48 (1998) 175.

    ADS  Google Scholar 

  11. S.E. Woosley et al., Ap. J. 433 (1994) 229.

    ADS  Google Scholar 

  12. K. Takahashi et al., Astronom. and Astrophys. 286 (1994) 857.

    ADS  Google Scholar 

  13. C. Freiburghaus et al., Ap. J. 516 (1999) 381.

    ADS  Google Scholar 

  14. A. McWilliam et al., Ap. J. 109 (1995) 2757.

    Google Scholar 

  15. A. McWilliam, Ann. Rev. Astronom. Astrophys. 35 (1997) 503.

    ADS  Google Scholar 

  16. J.M. Lattimer et al., Ap. J. 213 (1977) 225.

    ADS  Google Scholar 

  17. B.S. Meyer, Ap. J. 343 (1989) 254.

    ADS  Google Scholar 

  18. D. Eichler et al., Nature 340 (1989) 126.

    ADS  Google Scholar 

  19. S. Rosswog et al., Astronom. and Astrophys. 341 (1999) 499.

    ADS  Google Scholar 

  20. W.A. Fowler et al., Ann. Rev. Astronom. Astrophys. 5 (1967) 525.

    ADS  Google Scholar 

  21. S.E. Woosley et al., Ap. J. Suppl. 26 (1973) 231.

    ADS  Google Scholar 

  22. W.R. Hix and F.-K. Thielemann, Ap. J. 460 (1996) 869.

    ADS  Google Scholar 

  23. W.R. Hix and F.-K. Thielemann, Ap. J. 511 (1999) 862.

    ADS  Google Scholar 

  24. R.D. Hoffman et al., Ap. J. 521 (1999) 735.

    ADS  Google Scholar 

  25. F.-K. Thielemann et al., Ap. J. 460 (1996) 408.

    ADS  Google Scholar 

  26. H. Schatz et al., Phys. Rep. 294 (1998) 167.

    ADS  Google Scholar 

  27. F. Rembges et al., Ap. J. 484 (1997) 412.

    ADS  Google Scholar 

  28. S.E. Woosley and R.D. Hoffman, Ap. J. 395 (1992) 202.

    ADS  Google Scholar 

  29. R.D. Hoffman et al., Ap. J. 460 (1996) 478.

    ADS  Google Scholar 

  30. R.D. Hoffman et al., Ap. J. 482 (1997) 951.

    ADS  Google Scholar 

  31. K.-L. Kratz et al., Ap. J. 402 (1993) 216.

    ADS  Google Scholar 

  32. P. Möller et al., At. Data Nucl. Data Tables 59 (1995) 185.

    ADS  Google Scholar 

  33. A.G.W. Cameron et al., Astrophys. Space Sci. 91 (1983) 235.

    ADS  Google Scholar 

  34. V. Bouquelle et al., Astronom. and Astrophys. 305 (1996) 1005.

    ADS  Google Scholar 

  35. K.-L. Kratz et al., J. Phys. G 14 (1988) 331.

    ADS  Google Scholar 

  36. K.-L. Kratz, Rev. Modern Astronomy 1 (1988) 184.

    ADS  Google Scholar 

  37. F. Käppeler et al., Rep. Progr. Phys. 52 (1989) 945.

    ADS  Google Scholar 

  38. H. Beer et al., Ap. J. 474 (1997) 843.

    ADS  Google Scholar 

  39. F.-K. Thielemann et al., Nuclear Phys. A 570 (1994) 329c.

    ADS  Google Scholar 

  40. K.-L. Kratz et al., Z. Phys. A 325 (1986) 489.

    Google Scholar 

  41. E. Lund et al., Phys. Scripta 34 (1986) 614.

    ADS  Google Scholar 

  42. R.L. Gill et al., Phys. Rev. Lett. 56 (1986) 1874.

    ADS  Google Scholar 

  43. P. Möller et al., At. Data Nucl. Data Tables 66 (1997) 131.

    ADS  Google Scholar 

  44. J. Krumlinde and P. Möller, Nuclear Phys. A 417 (1984) 419.

    ADS  Google Scholar 

  45. P. Möller and J. Randrup, Nuclear Phys. A 514 (1990) 1.

    ADS  Google Scholar 

  46. Y. Aboussir et al., At. Data Nucl. Data Tables 61 (1995) 127.

    ADS  Google Scholar 

  47. J.M. Pearson et al., Phys. Lett. B 387 (1996) 455.

    ADS  Google Scholar 

  48. J. Dobaczewski et al., Phys. Rev. Lett. 72 (1994) 981.

    ADS  Google Scholar 

  49. J. Dobaczewski et al., Phys. Scripta T56 (1995) 15.

    ADS  Google Scholar 

  50. W.D. Myers, At. Data Nucl. Data Tables 17 (1976) 411.

    ADS  Google Scholar 

  51. H. von Groote et al., At. Data Nucl. Data Tables 17 (1976) 418.

    ADS  Google Scholar 

  52. K. Takahashi et al., At. Data Nucl. Data Tables 12 (1973) 101.

    ADS  Google Scholar 

  53. G. Audi et al., Nuclear Phys. A 624 (1997) 1.

    ADS  Google Scholar 

  54. K.-L. Kratz et al., T 1/2 and P n evaluation, KCh Mainz Report (1998).

  55. B. Chen et al., Phys. Lett. B 355 (1995) 37.

    ADS  Google Scholar 

  56. K.-L. Kratz et al., Nuclear Phys. A 630 (1998) 352c.

    ADS  Google Scholar 

  57. B. Pfeiffer et al., Z. Phys. A 357 (1997) 235.

    ADS  Google Scholar 

  58. C. Freiburghaus et al., Nuclear Phys. A 621 (1997) 405c.

    ADS  Google Scholar 

  59. K.L. Kratz et al., Il Nuovo Cimento A 111 (1998) 1043.

    ADS  Google Scholar 

  60. T. Tachibana et al., Progr. Theoret. Phys. 84 (1990) 641.

    ADS  Google Scholar 

  61. E.R. Hilf et al., in: Suppl. to Proc. Internat. Conf. NFFS-3, CERN 76–13 (1976) 142.

  62. J. Dobaczewski et al., Phys. Rev. C 53 (1996) 2809.

    ADS  Google Scholar 

  63. B.S. Meyer et al., Ap. J. 399 (1992) 656.

    ADS  Google Scholar 

  64. K.-L. Kratz et al., Z. Phys. A 340 (1991) 419.

    ADS  Google Scholar 

  65. K.-L. Kratz et al., Z. Phys. A 336 (1990) 357.

    Google Scholar 

  66. K.-L. Kratz et al., Phys. Rev. C 38 (1988) 278.

    MathSciNet  ADS  Google Scholar 

  67. Proc. Nuclear Structure of the Zirconium Region, Research Reports in Physics (Springer, ISBN 0–387–50120–7, Berlin, 1988).

  68. Proc. Nuclei far from Stability / Atomic Masses and Fundamental Constants 1992, Inst. of Physics Conference Series, Vol. 132 (IOP, ISBN 0–7503–0262–3, 1993).

  69. Proc. Exotic Nuclei and Atomic Masses ENAM'95 (Edition Fronti`eres, ISBN 2–86332–186–2, 1995).

  70. S. Schoedder et al., Z. Phys. A 352 (1995) 237.

    ADS  Google Scholar 

  71. T. Mehren et al., Phys. Rev. Lett. 77 (1996) 458.

    ADS  Google Scholar 

  72. G. Lhersonneau et al., European Phys. J. A 1 (1998) 285.

    ADS  Google Scholar 

  73. Exotic Nuclei and Atomic Masses-ENAM'98, Bellaire, USA, AIP Conference Proceedings, Vol. 455 (Amer. Inst. Phys., New York, 1998).

  74. S. Franchoo et al., Phys. Rev. Lett. 81 (1998) 3100.

    ADS  Google Scholar 

  75. O. Sorlin et al., Nuclear Phys. A 632 (1998) 205.

    ADS  Google Scholar 

  76. R. Grzywacz et al., Phys. Rev. Lett. 81 (1998) 766.

    ADS  Google Scholar 

  77. M. Hannawald et al., Phys. Rev. Lett. 82 (1999) 1391.

    ADS  Google Scholar 

  78. S. Raman et al., Phys. Rev. C 43 (1991) 556.

    ADS  Google Scholar 

  79. O. Sorlin et al., Nuclear Phys. A 660 (1999) 3.

    ADS  Google Scholar 

  80. F. Azaiez and O. Sorlin, Nucl. Phys. News 8 (1998) 34.

    Article  Google Scholar 

  81. P. Hoff et al., Phys. Rev. Lett. 77 (1996) 1020.

    ADS  Google Scholar 

  82. M. Sanchez-Vega et al., Phys. Rev. Lett. 80 (1998) 5504.

    ADS  Google Scholar 

  83. B. Fogelberg et al., in: Exotic Nuclei and Atomic Masses-ENAM'98, AIP Conference Proceedings, Vol. 455 (Amer. Inst. Phys., New York, 1998) pp. 502, 552, 785.

    Google Scholar 

  84. N.J. Stone et al., Phys. Rev. Lett. 78 (1997) 820.

    ADS  Google Scholar 

  85. C.T. Zhang et al., Z. Phys. A 358 (1997) 9.

    ADS  Google Scholar 

  86. V.N. Fedoseyev et al., Z. Phys. A 353 (1995) 9.

    ADS  Google Scholar 

  87. T. Kautzsch et al., Phys. Rev. C 54 (1996) 2811.

    ADS  Google Scholar 

  88. K.-L. Kratz et al., in: Fission and Properties of Neutron-Rich Nuclei (World Scientific, Singapore, 1998) p. 586.

    Google Scholar 

  89. T. Rauscher et al., Phys. Rev. C 57 (1998) 2031.

    ADS  Google Scholar 

  90. I. Ragnarsson and R.K. Sheline, Phys. Scripta 29 (1984) 385.

    ADS  Google Scholar 

  91. W.B. Walters, in: Fission and Properties of Fission-Product Nuclides, AIP Conference Series, Vol. 447 (1998) p. 196.

    Article  ADS  Google Scholar 

  92. Jing-ye Zhang et al., Phys. Rev. C 58 (1998) 2663.

    ADS  Google Scholar 

  93. N. Erdmann et al., Appl. Phys. B 66 (1998) 431.

    ADS  Google Scholar 

  94. M. Hannawald et al., to be published.

  95. K.-L. Kratz, in: Exotic Nuclei and Atomic Masses-ENAM'98, AIP Conference Proceedings, Vol. 455 (Amer. Inst. Phys., New York, 827.

  96. V.I. Mishin et al., Nucl. Instrum. Methods Phys. Res. B 73 (1993) 550.

    ADS  Google Scholar 

  97. Y. Jading et al., Nucl. Instrum. Methods Phys. Res. B 126 (1997) 76.

    ADS  Google Scholar 

  98. V. Sebastian et al., in: Exotic Nuclei and Atomic Masses-ENAM'98, AIP Conference Proceedings, Vol. 455 (Amer. Inst. Phys., New York, 1998) p. 126.

    Google Scholar 

  99. N.V. Zamfir et al., Phys. Rev. C 51 (1995) 98.

    ADS  Google Scholar 

  100. T. Kautzsch, Ph.D. thesis, Univ. Mainz;and to be published.

  101. K.-L. Kratz, in: Nuclei in the Cosmos III, AIP Conference Proceedings, Vol. 327 (Amer. Inst. Phys., New York, 1995) p. 113.

    Google Scholar 

  102. G. Walter et al., Astronom. and Astrophys. 167 (1986) 186.

    ADS  Google Scholar 

  103. T. Rauscher (1998), private communication.

  104. Y.-Z. Qian et al., Ap. J. 494 (1998) 285.

    ADS  Google Scholar 

  105. C.T. Zhang et al., Z. Phys. A 358 (1997) 9.

    ADS  Google Scholar 

  106. J.J. Cowan et al., Ap. J. 521 (1999) 194.

    ADS  Google Scholar 

  107. A.J. Westphal et al., Nature 396 (1998) 50.

    ADS  Google Scholar 

  108. N.A. Orr et al., Phys. Lett. B 258 (1991) 29.

    ADS  Google Scholar 

  109. O. Sorlin et al., Phys. Rev. C 47 (1993) 2491.

    Google Scholar 

  110. T.R. Werner et al., Phys. Lett. B 333 (1994) 303.

    ADS  Google Scholar 

  111. J. Dobaczewski, in: Extremes of Nuclear Structure (GSI, ISSN 0720–8715, 1996) p. 214.

  112. B.A. Brown, Phys. Rev. C 58 (1998) 220.

    ADS  Google Scholar 

  113. L. Satpathy and R.C. Nayak, J. Phys. 24 (1998) 1527.

    ADS  Google Scholar 

  114. C. Sneden et al., Ap. J. 467 (1996) 819.

    ADS  Google Scholar 

  115. M. Salaris and A. Weiss, Astronom. and Astrophys. 327 (1997) 107.

    ADS  Google Scholar 

  116. J.J. Cowan et al., in: 194th AAS Meeting, Chicago, #67.04 (1999).

  117. G.J. Wasserburg et al., Ap. J. 466 (1996) L109.

    ADS  Google Scholar 

  118. F.-K. Thielemann et al., Astronom. and Astrophys. 74 (1979) 175.

    ADS  Google Scholar 

  119. Y.-Z. Qian and S.E. Woosley, Ap. J. 471 (1996) 331.

    ADS  Google Scholar 

  120. B.S. Meyer et al., Phys. Rev. C 58 (1998) 3696.

    ADS  Google Scholar 

  121. G.C. McLaughlin et al., Phys. Rev. C 59 (1999) 2873.

    ADS  Google Scholar 

  122. S.E. Thorsett, Phys. Rev. Lett. 77 (1996) 1432.

    ADS  Google Scholar 

  123. J. Taylor, Rev. Modern Phys. 66 (1994) 711.

    ADS  Google Scholar 

  124. S.K. Rosswog et al., Astronom. and Astrophys., submitted.

  125. R. Narayan et al., Ap. J. 395 (1992) L83.

    ADS  Google Scholar 

  126. E.P.J. van den Heuvel and D.R. Lorimer, MNRAS 283 (1996) L37.

    ADS  Google Scholar 

  127. M.B. Davies et al., Ap. J. 431 (1994) 742.

    ADS  Google Scholar 

  128. H.T. Janka and M. Ruffert, A&A 307 (1996) L33.

    ADS  Google Scholar 

  129. M. Ruffert and H.-T. Janka, Astronom. and Astrophys. 338 (1998) 535.

    ADS  Google Scholar 

  130. T.W. Baumgarte et al., Phys. Rev. Lett. 79 (1997) 1182.

    ADS  Google Scholar 

  131. C. Freiburghaus et al., Ap. J. 525 (1999) L121.

    ADS  Google Scholar 

  132. J.J. Cowan et al., Ap. J. 480 (1997) 246.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kratz, KL., Pfeiffer, B., Thielemann, FK. et al. Nuclear structure studies at ISOLDE and their impact on the astrophysical r-process. Hyperfine Interactions 129, 185–221 (2000). https://doi.org/10.1023/A:1012694723985

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012694723985

Navigation