Skip to main content
Log in

Double-beta decay: Recent advances in experimental studies

  • On the 85th Anniversary of V.V. Vladimirsky
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The current situation in experiments studying double-beta decay is surveyed. The amount of experimental information about the two-neutrino mode of the process has grown considerably over the last decade. The two-neutrino double-beta decay of ten nuclei (48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128Te, 130Te, 150Nd, and 238U) was observed in direct and geochemical experiments. However, the main fundamental question—that of neutrinoless double-beta decay, which has not yet been recorded, although the sensitivity of present-day facilities featuring germanium detectors is higher than 1025 yr—remains open. The constraint on the effective Majorana mass on the basis of these results is 〈m v〉<(0.4–1.1) eV. Further advancements in searches for neutrinoless double-beta decays must rely on developing fundamentally new experimental facilities, since the potential of those that already exist has been exhausted to a considerable extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. R. Elliott et al., Phys. Rev. Lett. 59, 2020 (1987); Phys. Rev. C 46, 1535 (1992).

    ADS  Google Scholar 

  2. T. Kirsten and H. W. Muller, Earth Planet. Sci. Lett. 6, 271 (1969).

    Article  ADS  Google Scholar 

  3. A. A. Vasenko et al., Mod. Phys. Lett. A 5, 1299 (1990).

    ADS  Google Scholar 

  4. A. A. Vasenko et al., Prib. Tekh. Éksp., No. 2, 56 (1989).

  5. M. Göppert-Mayer, Phys. Rev. 48, 512 (1935).

    MATH  ADS  Google Scholar 

  6. E. Fireman, Phys. Rev. 74, 1238 (1948).

    Google Scholar 

  7. W. H. Furry, Phys. Rev. 56, 1184 (1939).

    Article  MATH  ADS  Google Scholar 

  8. M. G. Inghram and J. H. Reynolds, Phys. Rev. 76, 1265 (1949); 78, 822 (1950).

    ADS  Google Scholar 

  9. C. S. Wu et al., Phys. Rev. 105, 1413 (1957).

    Article  ADS  Google Scholar 

  10. G. B. Gelmini and M. Roncadelli, Phys. Lett. B 99, 411 (1981).

    ADS  Google Scholar 

  11. R. N. Mohapatra and E. Takasugi, Phys. Lett. B 211, 192 (1988).

    ADS  Google Scholar 

  12. V. I. Tretyak and Yu. G. Zdesenko, At. Data Nucl. Data Tables 61, 43 (1995).

    Article  ADS  Google Scholar 

  13. E. W. Hennecke et al., Phys. Rev. C 11, 1378 (1975).

    Article  ADS  Google Scholar 

  14. W. J. Lin et al., Nucl. Phys. A 457, 285 (1986).

    ADS  Google Scholar 

  15. T. Bernatowicz et al., Phys. Rev. Lett. 69, 2341 (1992).

    Article  ADS  Google Scholar 

  16. N. Takaoka et al., Phys. Rev. C 53, 1557 (1996).

    Article  ADS  Google Scholar 

  17. M. K. Moe et al., Phys. Rev. C 22, 2186 (1980).

    Article  ADS  Google Scholar 

  18. A. Balysh et al., Phys. Rev. Lett. 77, 5186 (1996).

    Article  ADS  Google Scholar 

  19. H. Ejiri et al., Phys. Lett. B 258, 17 (1991).

    ADS  Google Scholar 

  20. S. R. Elliott et al., J. Phys. G 17, S145 (1991).

    Article  ADS  Google Scholar 

  21. K. Kume et al., Nucl. Phys. A 577, 405 (1994).

    ADS  Google Scholar 

  22. V. Artemiev et al., Phys. Lett. B 345, 564 (1995).

    ADS  Google Scholar 

  23. A. De Silva et al., Phys. Rev. C 56, 2451 (1997).

    MathSciNet  ADS  Google Scholar 

  24. A. L. Turkevich et al., Phys. Rev. Lett. 67, 3211 (1991).

    Article  ADS  Google Scholar 

  25. A. Kawashima et al., Phys. Rev. C 47, 2452 (1993).

    Article  ADS  Google Scholar 

  26. R. Arnold et al., Nucl. Phys. A (2000) (in press).

  27. A. S. Barabash et al., Phys. Lett. B 345, 408 (1995).

    ADS  Google Scholar 

  28. F. T. Avignone et al., Phys. Lett. B 256, 559 (1991).

    ADS  Google Scholar 

  29. A. Balysh et al., Phys. Lett. B 356, 450 (1995).

    ADS  Google Scholar 

  30. A. Balysh et al., Phys. Rev. D 55, 54 (1997).

    ADS  Google Scholar 

  31. R. Arnold et al., Nucl. Phys. A 636, 209 (1998).

    Google Scholar 

  32. D. Dassie et al., Phys. Rev. D 51, 2090 (1995).

    ADS  Google Scholar 

  33. S. R. Elliott et al., Phys. Rev. C 46, 1535 (1992).

    Article  ADS  Google Scholar 

  34. R. Arnold et al., Z. Phys. C 72, 239 (1996).

    Google Scholar 

  35. M. G. Shchepkin, Usp. Fiz. Nauk 143, 513 (1984) [Sov. Phys. Usp. 27, 555 (1984)].

    Google Scholar 

  36. M. Doi et al., Prog. Theor. Phys. Suppl. 83, 1 (1985).

    Google Scholar 

  37. T. Tomoda, Rep. Prog. Phys. 54, 53 (1991).

    Article  ADS  Google Scholar 

  38. H. F. Klapdor-Kleingrothaus and A. Schtaudt, Nonaccelerator Elementary-Paricle Physics (Nauka, Moscow, 1997).

    Google Scholar 

  39. Yu. G. Zdesenko, Fiz. Élem. Chastits At. Yadra 11, 1369 (1980) [Sov. J. Part. Nucl. 11, 542 (1980)].

    Google Scholar 

  40. M. K. Moe, Int. J. Mod. Phys. E 2, 507 (1993).

    ADS  Google Scholar 

  41. O. Ya. Zeldovich, Preprint No. 29-97, ITÉF (Institute of Theoretical and Experimental Physics, Moscow, 1997).

  42. Ya. B. Zel'dovich et al., Usp. Fiz. Nauk 54, 361 (1954).

    MATH  Google Scholar 

  43. V. R. Lazarenko, Usp. Fiz. Nauk 90, 601 (1966) [Sov. Phys. Usp. 9, 860 (1967)].

    Google Scholar 

  44. A. H. Wapstra and G. Audi, Nucl. Phys. A 432, 55 (1985).

    ADS  Google Scholar 

  45. M. C. Gonzales-Garcia and Y. Nir, Phys. Lett. B 232, 383 (1989).

    ADS  Google Scholar 

  46. Z. Berezhiani et al., Phys. Lett. B 291, 99 (1992).

    ADS  Google Scholar 

  47. C. P. Burgess and J. M. Cline, Phys. Lett. B 298, 141 (1993).

    ADS  Google Scholar 

  48. T. Kirsten et al., in Proceedings of the International Symposium on Nuclear Beta Decays and Neutrino, Osaka, Japan, 1986, Ed. by T. Kotani et al. (World Sci., Singapore, 1986), p. 81.

    Google Scholar 

  49. O. K. Manuel, J. Phys. G 17, S221 (1991).

    Article  ADS  Google Scholar 

  50. T. Bernatowicz et al., Phys. Rev. C 47, 806 (1993).

    Article  ADS  Google Scholar 

  51. R. Luescher et al., Phys. Lett. B 434, 407 (1998).

    ADS  Google Scholar 

  52. M. Doi et al., Phys. Lett. B 103, 219 (1981).

    ADS  Google Scholar 

  53. W. C. Haxton and G. J. Stephenson, Jr., Prog. Part. Nucl. Phys. 12, 409 (1984).

    Article  ADS  Google Scholar 

  54. E. Caurier et al., Phys. Lett. B 252, 13 (1990).

    ADS  Google Scholar 

  55. E. Caurier et al., Phys. Rev. Lett. 77, 1954 (1996).

    Article  ADS  Google Scholar 

  56. J. Retamosa et al., Phys. Rev. C 51, 371 (1995).

    Article  ADS  Google Scholar 

  57. J. Engel et al., Phys. Rev. C 37, 731 (1988).

    Article  ADS  Google Scholar 

  58. A. Staudt et al., Europhys. Lett. 13, 31 (1990).

    ADS  Google Scholar 

  59. M. Hirsh et al., Phys. Rep. 242, 403 (1994).

    ADS  Google Scholar 

  60. X. R. Wu et al., Phys. Lett. B 272, 169 (1991); 276, 272 (1992).

    ADS  Google Scholar 

  61. F. Šimkovicz et al., Yad. Fiz. 61, 1318 (1998) [Phys. At. Nucl. 61, 1218 (1998)].

    Google Scholar 

  62. G. Pantis et al., Yad. Fiz. 61, 1311 (1998) [Phys. At. Nucl. 61, 1211 (1998)].

    Google Scholar 

  63. G. Pantis et al., Phys. Rev. C 53, 695 (1996).

    Article  ADS  Google Scholar 

  64. L. Baudis et al., Phys. Rev. Lett. 83, 41 (1999).

    Article  ADS  Google Scholar 

  65. C. E. Aalseth et al., Phys. Rev. C 59, 2108 (1999); Yad. Fiz. 63, 1299, 1341 (2000) [Phys. At. Nucl. 63, 1225, 1268 (2000)].

    Article  ADS  Google Scholar 

  66. N. Kudomi et al., Nucl. Phys. A 629, 55 (1998).

    Google Scholar 

  67. F. A. Danevich et al., Nucl. Phys. B (Proc. Suppl.) 70, 246 (1999).

    Article  Google Scholar 

  68. A. Alessandrello et al., Phys. Lett. B 433, 156 (1998).

    ADS  Google Scholar 

  69. S. R. Elliott et al., Phys. Rev. C 46, 3055 (1996).

    Google Scholar 

  70. Ke You et al., Phys. Lett. B 265, 53 (1991).

    ADS  Google Scholar 

  71. M. Alston-Garnjost et al., Phys. Rev. Lett. 71, 831 (1993).

    Article  ADS  Google Scholar 

  72. M. K. Moe et al., Prog. Part. Nucl. Phys. 32, 247 (1994).

    Article  ADS  Google Scholar 

  73. K. Muto et al., Z. Phys. A 334, 187 (1989).

    Google Scholar 

  74. K. Muto et al., Z. Phys. A 339, 435 (1991).

    Article  Google Scholar 

  75. J. Suhonen et al., Nucl. Phys. A 543, 645 (1992).

    ADS  Google Scholar 

  76. J. Suhonen et al., Nucl. Phys. A 535, 509 (1991).

    ADS  Google Scholar 

  77. J. Suhonen et al., Phys. Rev. C 49, 3055 (1994).

    Article  ADS  Google Scholar 

  78. G. Pantis et al., J. Phys. G 18, S605 (1992).

    Article  ADS  Google Scholar 

  79. M. Guchtner et al., Phys. Rev. D 55, 54 (1997).

    ADS  Google Scholar 

  80. H. Ejiri et al., Nucl. Phys. A 611, 85 (1996).

    ADS  Google Scholar 

  81. J.-C. Vuilleumier et al., Phys. Rev. D 48, 1009 (1993).

    Article  ADS  Google Scholar 

  82. V. Artemiev et al., Nucl. Instrum. Methods A 303, 309 (1991).

    Article  ADS  Google Scholar 

  83. NEMO-3 Proposal, LAL Preprint 94-29 (1994).

  84. X. Sarazin et al., Nucl. Phys. B (Proc. Suppl.) 70, 239 (1999).

    Article  Google Scholar 

  85. A. Alessandrello et al., Nucl. Phys. B (Proc. Suppl.) 48, 238 (1996).

    Article  ADS  Google Scholar 

  86. A. Alessandrello et al., in Proceedings of the TAUP99, Paris, 1999, Nucl. Phys. B (Proc. Suppl.) (2000) (in press).

  87. H. V. Klapdor-Kleingrothaus et al., J. Phys. G 24, S483 (1998).

    Article  ADS  Google Scholar 

  88. M. K. Moe, Phys. Rev. C 44, 931 (1991).

    Article  ADS  Google Scholar 

  89. T. A. Girard et al., Nucl. Instrum. Methods A 316, 44 (1992).

    Article  ADS  Google Scholar 

  90. J. Suhonen, Yad. Fiz. 61, 1286 (1998) [Phys. At. Nucl. 61, 1186 (1998)].

    Google Scholar 

  91. S. K. Balaev et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 53, 2136 (1989).

    Google Scholar 

  92. M. Hirsch et al., Z. Phys. A 347, 151 (1994).

    Article  Google Scholar 

  93. S. I. Vasil'ev et al., Pis'ma Zh. Éksp. Teor. Fiz. 57, 614 (1993) [JETP Lett. 57, 631 (1993)].

    Google Scholar 

  94. C. Saenz et al., Phys. Rev. C 50, 1170 (1994).

    ADS  Google Scholar 

  95. A. Barabash et al., Z. Phys. A 357, 351 (1997).

    Article  Google Scholar 

  96. M. Aunola, J. Suhonen, A. S. Barabash, et al., Pis'ma Zh. Éksp. Teor. Fiz. 62, 690 (1995) [JETP Lett. 62, 706 (1995)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Yadernaya Fizika, Vol. 63, No. 8, 2000, pp. 1417–1431.

Original Russian Text Copyright © 2000 by Kirpichnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirpichnikov, I.V. Double-beta decay: Recent advances in experimental studies. Phys. Atom. Nuclei 63, 1341–1355 (2000). https://doi.org/10.1134/1.1307458

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1307458

Keywords

Navigation