Skip to main content
Log in

Test of physics beyond the standard model in nuclei

  • New Physics, Nuclear and Nucleon Structure in Rare Processes
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The modern theories of Grand Unification (GUT) and SuperSymmetric (SUSY) extensions of Standard Model (SM) suppose that the conservation laws of the SM may be violated to some small degree. The nuclei are well-suited as a laboratory to test fundamental symmetries and fundamental interactions like lepton flavor (LF) and lepton number (LN) conservation. A prominent role between experiments looking for LF and total LN violation play not yet observed processes of neutrinoless double-beta decay (0νββ decay). The GUT and SUSY models offer a variety of mechanisms that allow 0νββ decay to occur. They are based on mixing of Majorana neutrinos and/or R-parity-violation hypothesis. Although the 0νββ-decay has not been seen, it is possible to extract from the lower limits of the lifetime upper limits for the effective electron Majorana neutrino mass, effective right-handed weak-interaction parameters, the effective Majoron coupling constant, R-parity-violating SUSY parameters, etc. A condition for obtaining reliable limits for these fundamental quantities is that the nuclear matrix elements governing this process can be calculated correctly. The nuclear structure wave functions can be tested by calculating the two-neutrino double-beta decay (2νββ decay) for which we have experimental data and not only lower limits as for the 0νββ decay. For open-shell nuclei, the method of choice has been the quasiparticle random-phase approximation (QRPA), which treats Fermion pairs as bosons. It has been found that, by extending the QRPA including fermion commutation relations, better agreement with 2νββ-decay experiments is achieved. This increases also the reliability of conclusions from the upper limits on the 0νββ-decay transition probability. In this work, the limits on the LN-violating parameters extracted from current 0νββ-decay experiments are listed. Studies in respect to future 0νββ-decay experimental projects are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. T. Cleveland et al., Astrophys. J. 496, 505 (1998).

    Article  ADS  Google Scholar 

  2. K. S. Hirata et al., Phys. Rev. Lett. 77, 1683 (1996).

    ADS  Google Scholar 

  3. W. Hampel et al., Phys. Lett. B 388, 384 (1996).

    ADS  Google Scholar 

  4. J. N. Abdurashitov et al., Phys. Rev. Lett. 77, 4708 (1996).

    Article  ADS  Google Scholar 

  5. R. Becker-Szendy et al., Nucl. Phys. B (Proc. Suppl.) 38, 331 (1995).

    Article  ADS  Google Scholar 

  6. W. W. A. Alisson et al., Phys. Lett. B 391, 491 (1997).

    ADS  Google Scholar 

  7. M. Ambrosio et al., Phys. Lett. B 434, 451 (1998).

    ADS  Google Scholar 

  8. Y. Fukuda et al., Phys. Lett. B 433, 9 (1998); Phys. Rev. Lett. 81, 1562 (1998).

    ADS  Google Scholar 

  9. J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974); R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 2558 (1975); R. N. Mohapatra and G. Senjanović, Phys. Rev. D 12, 1502 (1975).

    Article  ADS  Google Scholar 

  10. H. Fritzsch and R. Minkowski, Phys. Rep. 73, 67 (1981).

    Article  ADS  Google Scholar 

  11. R. Kuchimanchi and R. N. Mohapatra, Phys. Rev. D 48, 4352 (1993); C. S. Aulakh, A. Melfo, A. Rasin, and G. Senjanović, Phys. Rev. D 58, 115007 (1998); B. Dutta and R. N. Mohapatra, Phys. Rev. D 59, 015018 (1999).

    Article  ADS  Google Scholar 

  12. J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 2951 (1982); M. Hirsch, H. V. Klapdor-Kleingrothaus, and S. Kovalenko, Phys. Lett. B 372, 8 (1996).

    ADS  Google Scholar 

  13. A. Faessler and F. Šimkovic, J. Phys. G: Nucl. Part. Phys. 24, 2139 (1998).

    ADS  Google Scholar 

  14. J. Suhonen and O. Civitarese, Phys. Rep. 300, 123 (1998).

    Article  ADS  Google Scholar 

  15. Heidelberg-Moscow Collab. (L. Baudis et al.), Phys. Rev. Lett. 83, 41 (1999).

    Google Scholar 

  16. C. E. Aalseth et al., Phys. Rev. C 59, 2108 (1999).

    Article  ADS  Google Scholar 

  17. X. Sarazin et al., Nucl. Phys. B (Proc. Suppl.) 70, 239 (1999).

    Article  Google Scholar 

  18. H. Ejiri et al., Nucl. Phys. A 611, 85 (1996).

    ADS  Google Scholar 

  19. F. A. Danevich et al., Phys. Lett. B 344, 72 (1995).

    ADS  Google Scholar 

  20. NEMO Collab. (R. Arnold et al.), Z. Phys. C 72, 239 (1996).

    Google Scholar 

  21. A. Alessandrello et al., Phys. Lett. B 433, 156 (1998).

    ADS  Google Scholar 

  22. R. Luescher et al., Phys. Lett. B 434, 407 (1998).

    ADS  Google Scholar 

  23. J. Toivanen and J. Suhonen, Phys. Rev. Lett. 75, 410 (1995); Phys. Rev. C 55, 2314 (1997).

    Article  ADS  Google Scholar 

  24. J. Schwieger, F. Šimkovic, and A. Faessler, Nucl. Phys. A 600, 179 (1996).

    ADS  Google Scholar 

  25. F. Šimkovic et al., Phys. Lett. B 393, 267 (1997).

    ADS  Google Scholar 

  26. M. Sambataro and J. Suhonen, Phys. Rev. C 56, 782 (1997).

    Article  ADS  Google Scholar 

  27. F. Šimkovic, A. A. Raduta, M. Veselsky, and A. Faessler, nucl-th/9907113; Phys. Rev. C 61, 044319 (2000).

    Google Scholar 

  28. S. M. Bilenky and S. T. Petcov, Rev. Mod. Phys. 59, 671 (1987).

    Article  ADS  Google Scholar 

  29. Y. Chikashige, R. N. Mohapatra, and R. Peccei, Phys. Rev. Lett. 45, 1926 (1980).

    Article  ADS  Google Scholar 

  30. G. Gelmini and M. Roncadelli, Phys. Lett. B 99, 411 (1981); H. Georgi, S. Glashow, and H. Nusssinov, Nucl. Phys. B 193, 297 (1981).

    ADS  Google Scholar 

  31. R. Barbier et al., hep-ph/9810232.

  32. V. Bednyakov, A. Faessler, and S. Kovalenko, hep-ph/9904414; Prog. Part. Nucl. Phys (in press).

  33. B. Pontecorvo, Phys. Lett. B 26, 630 (1968).

    ADS  Google Scholar 

  34. A. Faessler, S. Kovalenko, F. Šimkovic, and J. Schwieger, Phys. Rev. Lett. 78, 183 (1997); Yad. Fiz. 61, 1329 (1998) [Phys. At. Nucl. 61, 1229 (1998)]; A. Faessler, S. Kovalenko, and F. Šimkovic, Phys. Rev. D 58, 115004 (1998).

    Article  ADS  Google Scholar 

  35. A. Wodecki, W. A. Kamiński, and F. Šimkovic, hep-ph/9902453; Phys. Rev. D 60, 11507 (1999).

    Google Scholar 

  36. J. D. Vergados, hep-ph/9907316.

  37. A. Wodecki and W. A. Kamiński, Phys. Rev. C 59, 1232 (1999).

    Article  ADS  Google Scholar 

  38. W. J. Lin et al., Nucl. Phys. A 481, 484 (1988).

    ADS  Google Scholar 

  39. A. Kawashima, K. Takahashi, and A. Masuda, Phys. Rev. C 47, 2452 (1993).

    Article  ADS  Google Scholar 

  40. T. Bernatovicz et al., Phys. Rev. Lett. 69, 2341 (1992); Phys. Rev. C 47, 806 (1993).

    ADS  Google Scholar 

  41. A. L. Turkevich, T. E. Economou, and G. A. Gowan, Phys. Rev. Lett. 67, 3211 (1991).

    Article  ADS  Google Scholar 

  42. A. Balysh et al., Phys. Rev. Lett. 77, 5186 (1996).

    Article  ADS  Google Scholar 

  43. M. Günter et al., Phys. Rev. D 55, 54 (1997).

    Google Scholar 

  44. NEMO Collab. (R. Arnold et al.), Nucl. Phys. A 636, 209 (1998).

    ADS  Google Scholar 

  45. NEMO Collab. (A. S. Barabash), Nucl. Phys. A 629, 517 (1998).

    Google Scholar 

  46. S. Julian, Talk presented at MEDEX 99, Prague, Czech Republic, Jul. 20–23, 1999; A. Barabash, private communications.

  47. NEMO Collab. (R. Arnold et al.), Nucl. Phys. A (in press).

  48. A. De Silva, M. K. Moe, M. A. Nelson, and M. A. Vient, Phys. Rev. C 56, 2451 (1997).

    ADS  Google Scholar 

  49. NEMO Collab. (D. Dassié et al.), Phys. Rev. D 51, 2090 (1995).

    Google Scholar 

  50. A. S. Barabash et al., Phys. Lett. B 345, 408 (1995).

    ADS  Google Scholar 

  51. F. Šimkovic and G. Pantis, Yad. Fiz. 62, 632 (1999) [Phys. At. Nucl. 62, 585 (1999)].

    Google Scholar 

  52. P. Vogel, nucl-th/9904065.

  53. J. Abad, A. Morales, R. Núnez-Lagos, and A. F. Pacheco, Ann. Phys. (Leipzig) 80, 9 (1984).

    Google Scholar 

  54. O. Civitarese and J. Suhonen, Phys. Rev. C 58, 1535 (1998); Nucl. Phys. A 653, 321 (1999).

    ADS  Google Scholar 

  55. P. Vogel, M. Ericson, and J. D. Vergados, Phys. Lett. B 212, 259 (1988).

    ADS  Google Scholar 

  56. P. Vogel and M. R. Zirnbauer, Phys. Rev. Lett. 57, 3148 (1986).

    Article  ADS  Google Scholar 

  57. O. Civitarese, A. Faessler, and T. Tomoda, Phys. Lett. B 194, 11 (1987).

    ADS  Google Scholar 

  58. F. Šimkovic, G. Pantis, and A. Faessler, Prog. Part. Nucl. Phys. 40, 285 (1998); Yad. Fiz. 61, 1318 (1998) [Phys. At. Nucl. 61, 1218 (1998)].

    Google Scholar 

  59. M. Sambataro, Phys. Rev. C 59, 2056 (1999).

    ADS  Google Scholar 

  60. O. Civitarese, P. O. Hess, J. G. Hess, and M. Reboiro, Phys. Rev. C 59, 194 (1999).

    Article  ADS  Google Scholar 

  61. E. J. V. de Passos, A. F. R. de Toledo Piza, and F. Krmpotić, Phys. Rev. C 58, 1841 (1998).

    ADS  Google Scholar 

  62. A. Bobyk, W. A. Kamiński, and P. Zareba, Eur. Phys. J. A 5, 385 (1999).

    Article  ADS  Google Scholar 

  63. A. A. Raduta, C. V. Raduta, A. Faessler, and W. A. Kamiński, Nucl. Phys. A 634, 497 (1998).

    ADS  Google Scholar 

  64. D. R. Bes, O. Civitarese, and N. N. Scoccola, Phys. Lett. B 446, 93 (1999).

    ADS  Google Scholar 

  65. F. Šimkovic, G. Pantis, J. D. Vergados, and A. Faessler, hep-ph/9905509; Phys. Rev. C 60, 055502 (1999).

  66. F. Šimkovic, G. V. Efimov, M. A. Ivanov, and V. E. Lyubovitskij, Z. Phys. A 341, 193 (1992).

    Google Scholar 

  67. S. R. Elliot et al., Phys. Rev. C 46, 1535 (1992).

    ADS  Google Scholar 

  68. G. Pantis, F. Šimkovic, J. D. Vergados, and A. Faessler, Phys. Rev. C 53, 695 (1996).

    Article  ADS  Google Scholar 

  69. S. M. Bilenky, G. Guinti, W. Grimus, et al., hep-ph/9907234.

  70. R. Adhikari and G. Omanović, Phys. Rev. D 59, 073003 (1999).

    Google Scholar 

  71. F. Vissani, hep-ph/9906525.

  72. V. Barger and K. Whisnant, Phys. Lett. B 456, 194 (1999).

    ADS  Google Scholar 

  73. M. Hirsch, H. V. Klapdor-Kleingrothaus, and O. Panella, Phys. Lett. B 374, 7 (1996).

    ADS  Google Scholar 

  74. R. N. Mohapatra, hep-ph/9806520.

  75. J. Hellmig and H. V. Klapdor-Kleingrothaus, Z. Phys. A 359, 351 (1997); H. V. Klapdor-Kleingrothaus, hep-ph/9907040.

    Article  Google Scholar 

  76. O. Cremonesi, Talk presented at MEDEX 99, Prague, Czech Republic, Jul. 20–23, 1999.

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Department of Nuclear Physics, Comenius University, Bratislava, Slovakia

From Yadernaya Fizika, Vol. 63, No. 7, 2000, pp. 1240–1251.

Original English Text Copyright © 2000 by Faessler, Šimkovic.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faessler, A., Šimkovic, F. Test of physics beyond the standard model in nuclei. Phys. Atom. Nuclei 63, 1165–1176 (2000). https://doi.org/10.1134/1.855762

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.855762

Keywords

Navigation