Skip to main content

Advertisement

Log in

Is the weak interaction constant really constant?

  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A comparison is made of the probability of the process of two neutrino double-beta decay for 82Se and 96Zr in direct (counter) and geochemical experiments. The experimental data for 130Te are also analyzed. It is shown that the probability is systematically lower in geochemical experiments, which characterize the probability of ββ(2ν) decay a few billions years ago. In addition geochemical measurements on young minerals give lower values of T 1/2(130Te) as comparedto measurements on old minerals. It is proposed that this could be due to a change in the weak interaction constant with time. The possibilities of new precise measurements to be performed with the aid of counters and geochemical experiments are discussed. A new geochemical experiment with 100Mo is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.A.M. Dirac, Nature 139, 323 (1937).

    ADS  Google Scholar 

  2. E. Teller, Phys. Rev. 73, 801 (1948).

    Article  ADS  Google Scholar 

  3. L.D. Landau, in: Niels Bohr and the Development of Physics, edited by W. Pauli, (Pergamon Press, London, 1955).

    Google Scholar 

  4. C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. B.S. De Witt, Phys. Rev. Lett. 13, 114 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  6. G. Gamow, Phys. Rev. Lett. 19, 759 (1967).

    Article  ADS  Google Scholar 

  7. F. J. Dyson, in Aspects of Quantum Theory, edited by A. Salam, E.P. Wigner (Cambrige University Press, Cambrige, 1972).

    Google Scholar 

  8. A. Chodos, S. Detweiler, Phys. Rev. D 21, 2167 (1980).

    Article  ADS  Google Scholar 

  9. W.J. Marciano, Phys. Rev. Lett. 52, 489 (1984).

    Article  ADS  Google Scholar 

  10. Y.-S. Wu, Z.W. Wang, Phys. Rev. Lett. 52, 489 (1984).

    Article  Google Scholar 

  11. E.W. Kolb, M.J. Perry, T.P. Walker, Phys. Rev. D 33, 869 (1986).

    Article  ADS  Google Scholar 

  12. J. Griego, H. Vucetich, Phys. Rev. D 40, 1904 (1989).

    Article  ADS  Google Scholar 

  13. T. Damour, A.M. Polyakov, Nucl. Phys. B 423, 532 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. A. Albrecht, J. Magueijo, Phys. Rev. D 59, 043516 (1999).

    Google Scholar 

  15. J.D. Barrow, Phys. Rev. D 59, 043515 (1999).

    Google Scholar 

  16. M.A. Clayton J.W. Moffat, Phys. Lett. B 460, 263 (1999).

    Article  ADS  Google Scholar 

  17. P.P. Avelino, C.J.A.P. Martins, Phys. Lett. B 459, 468 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. T.J. Broadhurst, R.S. Ellis, D.C. Koo, A.S. Szalay, Nature 343, 726 (1990).

    Article  ADS  Google Scholar 

  19. T.C. Hill, P.J. Steinbardt, M.S. Turner, Phys. Lett. B 252, 343 (1990).

    Article  ADS  Google Scholar 

  20. M. Morikawa, Astrophys. J. 362, L37 (1990).

    Article  ADS  Google Scholar 

  21. M. Salgado, D. Sudarsky, H. Quevedo, Phys. Rev. D 53, 6771 (1996).

    Article  ADS  Google Scholar 

  22. M. Salgado, D. Sudarsky, H. Quevedo, Phys. Lett. B 408, 69 (1997).

    Article  ADS  Google Scholar 

  23. P.D. Sisterna, H. Vucetich, Phys. Rev. Lett. 72, 454 (1994).

    Article  ADS  Google Scholar 

  24. J.K. Webb et al., Phys. Rev. Lett. 82, 884 (1999).

    Article  ADS  Google Scholar 

  25. J.H. Irvine, L. Humphreys, Prog. Part. Nucl. Phys. 17, 59 (1986).

    Article  ADS  Google Scholar 

  26. J. Rich, O.D. Lloyd, M. Spiro, Phys. Rep. 151, 239 (1987).

    Article  ADS  Google Scholar 

  27. H.V. Klapdor-Kleingrothaus, A. Staudt, Non-Accelerator Physics, (IOP Publishers, Bristol and Philadelphia 1994).

    Google Scholar 

  28. P. Sisterna, H. Vucetich, Phys. Rev. D 41, 1034 (1990).

    Article  ADS  Google Scholar 

  29. D.A. Varshalovich, S.A. Levshakov, A.Yu. Potekhin, Usp. Fiz. Nauk 163, 111 (1993).

    Google Scholar 

  30. D.A. Varshalovich, V.E. Panchuk, A.V. Ivanchick, Astron. Lett. 22, 6 (1996).

    ADS  Google Scholar 

  31. T. Damour, F. Dyson, Nucl. Phys. B 480, 37 (1996).

    Article  ADS  Google Scholar 

  32. A.I. Shlyakhter, Nature 264, 340 (1976).

    Article  ADS  Google Scholar 

  33. H. Reeves, Rev. Mod. Phys. 66, 193 (1994).

    Article  ADS  Google Scholar 

  34. F.J. Dyson, Aspects of Quantum Theory, edited by A. Salam, E.P. Wigner (Cambridge University Press, Cambridge 1972), p. 213.

    Google Scholar 

  35. R. Arnold et al., Nucl. Phys. A 636, 209 (1998).

    Article  Google Scholar 

  36. T. Kirsten et al., in Proceedings of the International Symposium “Nucler Beta Decay and Neutrino, Osaka’86”, edited by T. Kotani et al. (WorldScientific, Singapore, 1987), p. 81.

    Google Scholar 

  37. W.J. Lin et al., Nucl. Phys. A 481, 477 (1988).

    Article  ADS  Google Scholar 

  38. S.V.S. Murty, K. Marti, Geochim. Cosmochim. Acta 51, 163 (1987).

    Article  ADS  Google Scholar 

  39. A.S. Barabash et al., in Proceedings of the International Conference “Neutrino’96”, edited by K. Enqvist et al. (WorldScientific, Singapore, 1997), p. 374.

    Google Scholar 

  40. T. Bernatowicz et al., Phys. Rev. C 47, 806 (1993).

    Article  ADS  Google Scholar 

  41. R. Arnold et al., Nucl. Phys. A 658, 299 (1999).

    Article  Google Scholar 

  42. A. Kawashima, K. Takahashi, A. Masuda, Phys. Rev. C 47, R2452 (1993).

    Article  ADS  Google Scholar 

  43. C. Arpesella et al., Europhys. Lett. 27, 29 (1994).

    Article  ADS  Google Scholar 

  44. A.S. Barabash et al., J. Phys. G 22, 487 (1996).

    Article  ADS  Google Scholar 

  45. N. Takaoka, K. Ogata, Z. Naturforsch. 21a, 84 (1966).

    ADS  Google Scholar 

  46. O.K. Manuel, in Proceedings of the International Symposium “Nucler Beta Decay and Neutrino. Osaka’86”, edited by T. Kotani et al. (WorldScientific, Singapore 1987), p. 71.

    Google Scholar 

  47. N. Takaoka, Y. Motomura, K. Nagano, Phys. Rev. C 53, 1557 (1996).

    Article  ADS  Google Scholar 

  48. A. Alessandrello et al., Nucl. Instrum. Meth. A 370, 241 (1996).

    Article  ADS  Google Scholar 

  49. D. Dassie et al., Phys. Rev. D 51, 2090 (1995).

    Article  ADS  Google Scholar 

  50. R. Arnold et al., Phys. C 72, 239 (1996).

    Google Scholar 

  51. M. Gunther et al., Phys. Rev. D 55, 54 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  52. A. De Silva et al., Phys. Rev. C 56, 2451 (1997).

    Article  ADS  Google Scholar 

  53. L.B. Okun, Leptons and Quarks (Nauka, Moscow, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Barabash.

Additional information

Communicated by B. Povh

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barabash, A.S. Is the weak interaction constant really constant?. Eur. Phys. J. A 8, 137–140 (2000). https://doi.org/10.1007/s100500070128

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s100500070128

PACS

Navigation