Skip to main content
Log in

Final results on the μ3He-capture experiment and perspectives for μ p-capture studies

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Muon capture on hydrogen gives a unique possibility for a measurement of the pseudo-scalar form factor g p (q 2c = -0.88 m 2μ ) of the nucleonic weak current, thus providing a sensitive test of the QCD chiral symmetry perturbation theory which predicts the value of this form factor with a precision of Δg p /g p ≃ 2%. For adequate comparison with theory, the muon capture rate Λc should be measured with a precision of ΔΛcc ≤ 1%, that is an order of magnitude better than the precision of the present world data. We report on the project of an experiment designed to provide the required precision. Also, we present the final result of our previous experiment on a high precision measurement of the μ3He capture rate and compare this result with the PCAC prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Ackerbauer et al., Phys. Lett. B 417 (1998) 224.

    Article  ADS  Google Scholar 

  2. C.W. Kim and H. Primakoff, Phys. Rev. B 140 (1965) 566.

    Article  MathSciNet  ADS  Google Scholar 

  3. J.G. Congleton and H.W. Fearing, Nucl. Phys. A 552 (1993) 534.

    Article  ADS  Google Scholar 

  4. J.G. Congleton and E. Truhlik, Phys. Rev. C 53 (1996) 956.

    Article  ADS  Google Scholar 

  5. V. Bernard et al., Phys. Rev. D 50 (1994) 6899.

    Article  ADS  Google Scholar 

  6. H.W. Fearing et al., Phys. Rev. D 56 (1997) 1783.

    Article  ADS  Google Scholar 

  7. R. Hildebrand, Phys. Rev. Lett. 8 (1962) 34.

    Article  ADS  Google Scholar 

  8. E.J. Bleser et al., Phys. Rev. Lett. 8 (1962) 288.

    Article  ADS  Google Scholar 

  9. E. Bertolini et al., in: Proc. Int. Conf on High Energy Physics, Geneva (1962).

  10. J.E. Rothberg et al., Phys. Rev. 132 (1963) 2664.

    Article  ADS  Google Scholar 

  11. A. Alberigi Quaranta et al., Phys. Rev. 177 (1969) 2118.

    Article  ADS  Google Scholar 

  12. V.M. Bystritskii et al., Sov. Phys. JETP 40 (1974) 811.

    ADS  Google Scholar 

  13. G. Bardin et al., Nuclear Phys. A 352 (1981) 365.

    Article  ADS  Google Scholar 

  14. G. Bardin et al., Phys. Lett. 104 B (1981) 320.

    ADS  Google Scholar 

  15. G. Jonkmans et al., Phys. Rev. Lett. 77 (1996) 4512.

    Article  ADS  Google Scholar 

  16. I.V. Falomkin et al., Phys. Lett. 3 (1963) 229.

    Article  ADS  Google Scholar 

  17. L.B. Auerbach et al., Phys. Rev. B 138 (1965) 127.

    Article  ADS  Google Scholar 

  18. D.B. Clay et al., Phys. Rev. B 140 (1965) 586.

    ADS  Google Scholar 

  19. N.C. Mukhopadhyay and K. Junker, Phys. Rev. Lett. 27 (1996).

  20. D.V. Balin et al., PSI Proposal R-97-05.1 (1997).

  21. T.J. Chapin et al., Nucl. Instrum. Methods 197 (1982) 305.

    Article  Google Scholar 

  22. V.A. Andreev et al., Preprint PNPI-1142 (1985).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorobyov, A., Ackerbauer, P., Adamczak, A. et al. Final results on the μ3He-capture experiment and perspectives for μ p-capture studies. Hyperfine Interactions 118, 13–24 (1999). https://doi.org/10.1023/A:1012616015304

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012616015304

Keywords

Navigation