Elsevier

Nuclear Physics A

Volume 203, Issue 2, 19 March 1973, Pages 369-387
Nuclear Physics A

The β-decay of tritium

https://doi.org/10.1016/0375-9474(73)90141-3Get rights and content

Abstract

A measurement of the high-energy part of the β-spectrum of tritium is made using a magnetic spectrometer. The present work incorporates a cooled Si(Li) detector to determine the energy of the β-rays after momentum selection by the magnetic spectrometer. This “energy signaturetechnique” effectively discriminates against background and scattered electrons. The calibration of the spectrometer is accomplished by recording the 195Pt K99 (20.5 keV) and the 195Pt LI31 (17.0 keV) internal conversion lines. These two lines bracket the end-point energy of tritium. The present value of 18.578 ± 0.040 keV for the tritium end-point energy agrees with a recent measurement by Bergkvist but disagrees with several other measurements. The data are consistent with assigning a zero rest mass to the electron's antineutrino and allow an upper limit of 100 eVc2 to be set, assuming that effects due to degenerate Fermi seas of neutrinos and antineutrinos are negligible. On the other hand, assuming a zero rest mass for the electron's antineutrino, the data allow an upper limit of 150 eV to be set for the Fermi energy Ef of a degenerate sea of neutrinos; and the data are consistent with EF = 0 eV.

References (52)

  • G.H. Jenks et al.

    Phys. Rev.

    (1949)
    G.H. Jenks et al.

    Phys. Rev.

    (1950)
  • W.M. Jones

    Phys. Rev.

    (1951)
    W.M. Jones

    Phys. Rev.

    (1955)
  • D.P. Gregory et al.

    Phys. Rev.

    (1958)
  • G.E. Owen et al.

    Phys. Rev.

    (1948)
    G.E. Owen et al.

    Rev. Sci. Instr.

    (1950)
  • A.N. Sosnovsky et al.

    Nucl. Phys.

    (1959)
  • W.F. Libby et al.

    Phys. Rev.

    (1939)
  • L.W. Alvarez et al.

    Phys. Rev.

    (1939)
    L.W. Alvarez et al.

    Phys. Rev.

    (1940)
    L.W. Alvarez et al.

    Phys. Rev.

    (1940)
  • R.D. O'Neal

    Phys. Rev.

    (1941)
  • S.C. Brown

    Phys. Rev.

    (1941)
  • C.E. Nielsen

    Phys. Rev.

    (1941)
  • R.J. Watts et al.

    Phys. Rev.

    (1946)
  • W.J. Byatt et al.

    Phys. Rev.

    (1948)
    W.J. Byatt et al.

    Phys. Rev.

    (1949)
  • G.C. Hanna et al.

    Phys. Rev.

    (1949)
  • G.C. Hanna et al.

    Phys. Rev.

    (1949)
  • E.R. Graves et al.

    Phys. Rev.

    (1949)
  • S.C. Curran et al.

    Nature

    (1948)
    S.C. Curran et al.

    Phil. Mag.

    (1949)
    S.C. Curran et al.

    Phil. Mag.

    (1949)
    S.C. Curran et al.

    Phys. Rev.

    (1949)
  • L.M. Langer et al.

    Phys. Rev.

    (1952)
  • D.R. Hamilton et al.

    Phys. Rev.

    (1951)
    D.R. Hamilton et al.

    Phys. Rev.

    (1953)
  • L. Friedman et al.

    Phys. Rev.

    (1958)
  • F.T. Porter

    Phys. Rev.

    (1959)
  • P.E. Moreland et al.
  • K.-E. Bergkvist
  • R.C. Salgo et al.

    Nucl. Phys.

    (1969)
  • R. Daris et al.

    Nucl. Phys.

    (1969)
  • V.E. Lewis

    Nucl. Phys.

    (1970)
  • E. McMillan

    Phys. Rev.

    (1936)
  • Cited by (17)

    • Nuclear Data Sheets for A = 3

      2015, Nuclear Data Sheets
    • Expectation of LET<inf>∞</inf> for a tritium beta particle

      1989, Nuclear Inst. and Methods in Physics Research, A
    • Mass spectrometric determinations of the absolute tritium activities of NBS tritiated water standards

      1989, International Journal of Radiation Applications and Instrumentation. Part
    View all citing articles on Scopus

    This work was supported in part by the Office of Naval Research under Contract Nonr-1705(02) and by the National Science Foundation under Contract NSF GP 28181.

    Present address: Physics Department, Brookhaven National Laboratory, Upton, L.I., New York 11973.

    View full text