NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of March 21, 2024.

Search: Author = V.Tselyaev

Found 54 matches.

Back to query form



2023LY03      Int.J.Mod.Phys. E32, 2350025 (2023)

N.Lyutorovich, V.Tselyaev

Multiphonon structure of high-spin states in 40Ca, 90Zr and 208Pb

NUCLEAR STRUCTURE 40Ca, 90Zr, 208Pb; calculated positive and negative parity states, energy levels, J, π within the framework of the multiphonon model including the renormalized phonons in the harmonic approximation and based on the EDF of the Skyrme type.

doi: 10.1142/S0218301323500258
Citations: PlumX Metrics


2022LY02      Phys.Rev. C 105, 014327 (2022)

N.Lyutorovich, V.Tselyaev, J.Speth, G.Martinez-Pinedo, K.Langanke, P.-G.Reinhard

Self-consistent description of high-spin states in doubly magic 208Pb

NUCLEAR STRUCTURE 208Pb; calculated natural and unnatural high-spin yrast levels of spins from 13-30, energy difference for the first two excited states in each angular momentum channel, discrete RPA (DRPA) results for the energies of the high-spin yrast states, energies and structures of 2p2h, 1p1h+phonon, and two-phonon energies of high spins. Self-consistent phonon-coupling model based on Skyrme functionals, with renormalized time-blocking approximation which evolves coherent one-particle-one-hole states of the random-phase approximation (RPA) to more complex configurations beyond RPA. Comparison with experimental data.

doi: 10.1103/PhysRevC.105.014327
Citations: PlumX Metrics


2022TS02      Phys.Rev. C 106, 064327 (2022)

V.Tselyaev

Spurious dipole mode in random-phase approximation and in models based on this approximation

NUCLEAR STRUCTURE 48Ca, 48Ni; calculated isoscalar E1 strength distribution. 208Pb; calculated E1 strength distribution in the region of pygmy dipole resonance. 16O, 48Ca, 208Pb; calculated energy of the spurious dipole mode. Fully self-consistent calculations of the electric dipole excitations performed in the models based on the Skyrme EDF. Comparison to experimental data.

NUCLEAR REACTIONS 48Ca, 48Ni(γ, X), E<40 MeV; calculated total E1 photoabsorption σ(E).Comparison to experimental data.

doi: 10.1103/PhysRevC.106.064327
Citations: PlumX Metrics


2020SP06      Phys.Rev. C 102, 054332 (2020)

J.Speth, P.-G.Reinhard, V.Tselyaev, N.Lyutorovich

Generalized Skyrme random-phase approximation for nuclear resonances: Different trends for electric and magnetic modes

NUCLEAR STRUCTURE 208Pb; calculated collective low- and high-lying resonances, GDR, GMR, GQR, energies of M1 excitations, energies of the first excited 3-, 5-, and 2+ states. Self-consistent Skyrme energy-density functional (EDF) approach using random phase approximation (RPA) and particle-hole plus phonon-coupling model, termed as time-blocking approximation (TBA).

doi: 10.1103/PhysRevC.102.054332
Citations: PlumX Metrics


2020TS02      Phys.Rev. C 102, 064319 (2020)

V.Tselyaev, N.Lyutorovich, J.Speth, P.-G.Reinhard

M1 resonance in 208Pb within the self-consistent phonon-coupling model

NUCLEAR STRUCTURE 208Pb; calculated energy and B(M1) of the isoscalar 1+ state, mean energy and the summed strength B(M1) of the isovector M1 resonance, energies and B(Eλ) values for first 2+, 3-, 4+, 5- and 6+ states, strength distributions of M1 excitations in (γ, γ'), and partial M1 cross sections in (p, p'). Extended self-consistent model including the particle-phonon coupling within the renormalized time blocking approximation (RenTBA) with several modified Skyrme energy density functionals (EDFs), and random-phase approximation (RPA) calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.102.064319
Citations: PlumX Metrics


2019TS05      Phys.Rev. C 99, 064329 (2019)

V.Tselyaev, N.Lyutorovich, J.Speth, P.-G.Reinhard, D.Smirnov

Low-energy M1 excitations in 208Pb and the spin channel of the Skyrme energy-density functional

NUCLEAR STRUCTURE 208Pb; calculated levels, B(M1), M1 strength function, and one-particle one-hole energies, rms radii using RPA with various Skyrme energy-density functional parametrizations. Comparison with experimental values, and discussed impact of spin-dependent part of Skyrme energy-density functional on M1 modes.

doi: 10.1103/PhysRevC.99.064329
Citations: PlumX Metrics


2018LY06      Phys.Rev. C 98, 054304 (2018)

N.Lyutorovich, V.Tselyaev, J.Speth, P.-G.Reinhard

Excitation spectra of exotic nuclei in a self-consistent phonon-coupling model

NUCLEAR STRUCTURE 48,56,68,78Ni, 100,132,140,176Sn; calculated mean energies and widths of giant resonances: giant monopole (GMR), giant dipole (GDR), and giant quadrupole (GQR), low-lying electric dipole strength in pygmy dipole resonances (PDR), isoscalar E0, E1 and E2 strength functions, isoscalar photoabsorption σ, isovector E1 strength function of 56Ni, isovector photoabsorption σ of 56,68Ni and 100,140Sn, and dependence of photoabsorption σ on single-particle basis size using random phase approximation (RPA) with and without self-consistent time-blocking approximation and Skyrme-Hartree-Fock nuclear force. Comparison with experimental data.

doi: 10.1103/PhysRevC.98.054304
Citations: PlumX Metrics


2018TS02      Phys.Rev. C 97, 044308 (2018)

V.Tselyaev, N.Lyutorovich, J.Speth, P.-G.Reinhard

Self-consistency in the phonon space of the particle-phonon coupling model

NUCLEAR STRUCTURE 16O, 40Ca, 208Pb; calculated energies and B(E3) of first 3- states, mean energies and σ of giant dipole resonance (GDR). Particle-phonon coupling model with non-linear form of time blocking approximation (TBA), called as configuration blocking approximation (CBA). Comparison with experimental data, and with standard TBA approximation.

doi: 10.1103/PhysRevC.97.044308
Citations: PlumX Metrics


2017TS06      Phys.Rev. C 96, 024312 (2017)

V.Tselyaev, N.Lyutorovich, J.Speth, P.-G.Reinhard

Optimizing phonon space in the phonon-coupling model

NUCLEAR STRUCTURE 16O, 40,48Ca, 56Ni, 132Sn, 208Pb; calculated mean energies of giant resonances (GRs), energies, B(E2) and B(E3) values of low-lying 2+ and 3- states. Phonon-coupling model using the time-blocking approximation (TBA) code with three different Skyrme parametrizations. Comparison with experimental data.

doi: 10.1103/PhysRevC.96.024312
Citations: PlumX Metrics


2016AC03      JETP Lett. 104, 374 (2016)

O.I.Achakovskiy, S.P.Kamerdzhiev, V.I.Tselyaev

Radiative strength function and the pygmy dipole resonance in 208Pb and 70Ni

NUCLEAR REACTIONS 208Pb, 70Ni(γ, X), (3He, 3He'), E<10 MeV; analyzed available data; 208Pb, 70Ni. deduced the pygmy-resonance parameters and the E1 strength function.

doi: 10.1134/S0021364016180053
Citations: PlumX Metrics


2016TS01      Phys.Rev. C 94, 034306 (2016)

V.Tselyaev, N.Lyutorovich, J.Speth, S.Krewald, P.-G.Reinhard

Application of an extended random-phase approximation to giant resonances in light-, medium-, and heavy-mass nuclei

NUCLEAR REACTIONS 16O, 40,48Ca, 132Sn, 208Pb(γ, X), E*=0-40 MeV; calculated photoabsorption cross sections, fractions of EWSR, energies, widths and other characteristics of giant-monopole resonances (GMR), giant-dipole resonances (GDR), and giant-quadrupole resonances (GQR) using extended random phase approximation (RPA) with time-blocking approximation (TBA). Comparison with experimental data.

doi: 10.1103/PhysRevC.94.034306
Citations: PlumX Metrics


2014SP02      Nucl.Phys. A928, 17 (2014)

J.Speth, S.Krewald, F.Grummer, P.-G.Reinhard, N.Lyutorovich, V.Tselyaev

Landau-Migdal vs. Skyrme

NUCLEAR STRUCTURE 208Pb; calculated E0, E1, E2 excitation γ strength functions using RPA with approximation for Landau-Migdal interaction and usin g full Skyrme interaction.

doi: 10.1016/j.nuclphysa.2014.03.023
Citations: PlumX Metrics


2013LI48      Phys.Rev. C 88, 044320 (2013)

E.Litvinova, P.Ring, V.Tselyaev

Relativistic two-phonon model for the low-energy nuclear response

NUCLEAR STRUCTURE 68,70,72Ni, 112,116,120,124Sn; calculated low-energy dipole spectra, energies of 1- states, B(E1), anharmonicity. Two-quasiparticle Pygmy-dipole modes. Relativistic two-phonon model. Self-consistent relativistic quasiparticle random phase approximation (RQRPA), and relativistic quasiparticle time-blocking approximations (RQTBA, RQTBA-2). Comparison with experimental data.

doi: 10.1103/PhysRevC.88.044320
Citations: PlumX Metrics


2013TS04      Phys.Rev. C 88, 054301 (2013)

V.I.Tselyaev

Subtraction method and stability condition in extended random-phase approximation theories

doi: 10.1103/PhysRevC.88.054301
Citations: PlumX Metrics


2012LY02      Phys.Rev.Lett. 109, 092502 (2012)

N.Lyutorovich, V.I.Tselyaev, J.Speth, S.Krewald, F.Grummer, P.-G.Reinhard

Self-Consistent Calculations of the Electric Giant Dipole Resonances in Light and Heavy Nuclei

NUCLEAR REACTIONS 16O, 40Ca, 208Pb(γ, X), E<40 MeV; calculated σ, electric giant dipole resonances. Skyrme interaction, comparison with available data.

doi: 10.1103/PhysRevLett.109.092502
Citations: PlumX Metrics


2010LI17      Phys.Rev.Lett. 105, 022502 (2010)

E.Litvinova, P.Ring, V.Tselyaev

Mode Coupling and the Pygmy Dipole Resonance in a Relativistic Two-Phonon Model

NUCLEAR STRUCTURE 116,120Sn, 68,70,72Ni; calculated energies, B(E1), anharmonicities, low-lying dipole spectra. Relativistic quasiparticle time blocking approximation (RQTBA).

doi: 10.1103/PhysRevLett.105.022502
Citations: PlumX Metrics


2010TS01      Bull.Rus.Acad.Sci.Phys. 74, 865 (2010); Izv.Akad.Nauk RAS, Ser.Fiz 74, 905 (2010)

V.I.Tselyaev

Elimination of spurious 0+ states in the quasiparticle time blocking approximation

NUCLEAR STRUCTURE 120Sn; calculated strength function of the spurious 0+ excitations. Bardeen-Cooper-Schrieffer approximation.

doi: 10.3103/S1062873810060286
Citations: PlumX Metrics


2009LI13      Nucl.Phys. A823, 26 (2009)

E.Litvinova, H.P.Loens, K.Langanke, G.Martinez-Pinedo, T.Rauscher, P.Ring, F.-K.Thielemann, V.Tselyaev

Low-lying dipole response in the relativistic quasiparticle time blocking approximation and its influence on neutron capture cross sections

NUCLEAR STRUCTURE 106,116,132,140Sn; calculated E1 strength function using microscopic quasiparticle time blocking approximation. Comparison with other models.

NUCLEAR REACTIONS 105,115,131,139Sn(n, γ), E=0.001-20 MeV; calculated σ. 67,69,71,73,75,77Ni, 105,109,113,115,119,123,129,131,133,135,137,139Sn(n, γ), E≈80-100 keV; calculated stellar capture rate ratio between various models.

doi: 10.1016/j.nuclphysa.2009.03.009
Citations: PlumX Metrics


2009LI20      Phys.Rev. C 79, 054312 (2009)

E.Litvinova, P.Ring, V.Tselyaev, K.Langanke

Relativistic quasiparticle time blocking approximation. II. Pygmy dipole resonance in neutron-rich nuclei

NUCLEAR STRUCTURE 68,70,72,74,76,78Ni, 116,118,120,122,124,126,128,130,132,134,136,138,140Sn, 208Pb; calculated dipole excitation spectra, σ, proton and neutron transition densities, pygmy strength, mean energies for giant dipole resonance (GDR) and pygmy dipole resonance (PDR) using relativistic quasiparticle random-phase approximation (RQRPA) and relativistic quasiparticle time-blocking approximation (RQTBA). Comparison with experimental data.

doi: 10.1103/PhysRevC.79.054312
Citations: PlumX Metrics


2009TS03      Phys.Rev. C 79, 034309 (2009)

V.Tselyaev, J.Speth, S.Krewald, E.Litvinova, S.Kamerdzhiev, N.Lyutorovich, A.Avdeenkov, F.Grummer

Description of the giant monopole resonance in the even-A 112-124Sn isotopes within a microscopic model including quasiparticle-phonon coupling

NUCLEAR STRUCTURE 90Zr, 110,112,114,116,118,120,122,124,132Sn, 144Sm, 208Pb; calculated strength distribution, mean energies and widths of isoscalar giant-monopole resonances (ISGMR) using two microscopic models: quasiparticle random phase approximation (QRPA) and quasiparticle time blocking approximation (QTBA) with self-consistence scheme based on Hartree-Fock+Bardeen-Cooper-Schrieffer (HF+BCS) approximation and Skyrme energy functional. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.034309
Citations: PlumX Metrics


2008LI30      Phys.Rev. C 78, 014312 (2008); Erratum Phys.Rev. C 78, 049902 (2008)

E.Litvinova, P.Ring, V.Tselyaev

Relativistic quasiparticle time blocking approximation: Dipole response of open-shell nuclei

NUCLEAR STRUCTURE 88Sr, 90Zr, 92Mo, 100,106,114,116,120,130Sn; calculated dipole spectra, photoproduction σ, B(E1). Relativistic quasiparticle random phase approximation.

doi: 10.1103/PhysRevC.78.014312
Citations: PlumX Metrics


2008LY03      Eur.Phys.J. A 37, 381 (2008)

N.Lyutorovich, J.Speth, A.Avdeenkov, F.Grummer, S.Kamerdzhiev, S.Krewald, V.I.Tselyaev

Self-consistent calculations within the Green's function method including particle-phonon coupling and the single-particle continuum

NUCLEAR STRUCTURE 132Sn, 208Pb; calculated levels, J, π, B(E1), GDR, photoabsorption σ, isoscalar/isovector quadrupole strength distributions using a quasiparticle time blocking approximation. Comparison with RPA and data.

doi: 10.1140/epja/i2008-10638-x
Citations: PlumX Metrics


2007LI25      Phys.Rev. C 75, 054318 (2007)

E.V.Litvinova, V.I.Tselyaev

Quasiparticle time blocking approximation in coordinate space as a model for the damping of the giant dipole resonance

NUCLEAR STRUCTURE 116,120,124Sn; calculated E1 photoabsorption cross sections using quasiparticle time blocking approximation. Compared results to available data.

doi: 10.1103/PhysRevC.75.054318
Citations: PlumX Metrics


2007LI35      Phys.Rev. C 75, 064308 (2007)

E.Litvinova, P.Ring, V.Tselyaev

Particle-vibration coupling within covariant density functional theory

NUCLEAR STRUCTURE 132Sn, 208Pb; calculated Isoscalar monopole and Isovector E1 resonance strength functions and E1 photoabsorption cross sections using covariant density functional theory including particle vibration coupling.

doi: 10.1103/PhysRevC.75.064308
Citations: PlumX Metrics


2007LI50      Phys.Atomic Nuclei 70, 1380 (2007)

E.Litvinova, P.Ring, V.Tselyaev

Covariant response theory beyond RPA and its application

NUCLEAR STRUCTURE 132Sn, 208Pb; calculated isoscalar E0 monopole resonance and isovector E1 resonance strength functions using relativistic random phase approximation with coupling to collective vibrations.

doi: 10.1134/S1063778807080108
Citations: PlumX Metrics


2007RI14      Nucl.Phys. A788, 194c (2007)

P.Ring, E.Litvinova, T.Niksic, N.Paar, D.Pena Arteaga, V.I.Tselyaev, D.Vretenar

Dynamics of Exotic Nuclear Systems: Covariant QRPA and Extensions

NUCLEAR STRUCTURE 20,26Ne, 132Sn, 208Pb; calculated isoscalar monopole, isovector E1, M1 resonance strength functions and neutron single-particle states using covariant density functional theory including particle vibration coupling.

doi: 10.1016/j.nuclphysa.2007.01.082
Citations: PlumX Metrics


2007TE05      Phys.Lett. B 647, 104 (2007)

G.Tertychny, V.Tselyaev, S.Kamerdzhiev, F.Grummer, S.Krewald, J.Speth, A.Avdeenkov, E.Litvinova

Microscopic description of the low lying and high lying electric dipole strength in stable Ca isotopes

NUCLEAR STRUCTURE 40,44,48Ca; calculated B(E1), electric dipole strength distribution, GDR. Extended theory of finite Fermi systems.

doi: 10.1016/j.physletb.2007.01.069
Citations: PlumX Metrics


2007TE08      Nucl.Phys. A788, 159c (2007)

G.Tertychny, V.Tselyaev, S.Kamerdzhiev, F.Grummer, S.Krewald, J.Speth, E.Litvinova, A.Avdeenkov

Pygmy dipole resonance in stable Ca isotopes

NUCLEAR STRUCTURE 40,44,48Ca; calculated B(E1), electric dipole strength distribution, transition densities. Extended theory of finite Fermi systems using RPA. Comparison with data.

doi: 10.1016/j.nuclphysa.2007.01.077
Citations: PlumX Metrics


2007TS01      Phys.Rev. C 75, 014315 (2007)

V.Tselyaev, J.Speth, F.Grummer, S.Krewald, A.Avdeenkov, E.Litvinova, G.Tertychny

Extended theory of finite Fermi systems: Application to the collective and noncollective E1 strength in 208Pb

NUCLEAR STRUCTURE 208Pb; calculated levels, J, π, E1 strength distribution, transition densities. Extended theory of finite Fermi systems.

doi: 10.1103/PhysRevC.75.014315
Citations: PlumX Metrics


2007TS02      Phys.Rev. C 75, 024306 (2007)

V.I.Tselyaev

Quasiparticle time blocking approximation within the framework of generalized Green function formalism

doi: 10.1103/PhysRevC.75.024306
Citations: PlumX Metrics


2007VI01      Int.J.Mod.Phys. E16, 249 (2007)

X.Vinas, V.I.Tselyaev, V.B.Soubbotin, S.Krewald

Quasilocal density functional theory for nuclei including pairing correlations

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 132Sn, 208Pb; calculated binding energies, radii. 198,200,202,204,206,210,212Pb; calculated binding energies. 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated pair gap energies. Density functional theory.

doi: 10.1142/S0218301307005697
Citations: PlumX Metrics


2006KR11      Phys.Rev.C 74, 064310 (2006)

S.Krewald, V.B.Soubbotin, V.I.Tselyaev, X.Vinas

Density matrix functional theory that includes pairing correlations

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated ground-state energies, two-neutron separation energies, related features. Quasilocal density matrix functional theory with pairing correlations.

doi: 10.1103/PhysRevC.74.064310
Citations: PlumX Metrics


2006VI04      Phys.Atomic Nuclei 69, 1207 (2006)

X.Vinas, V.I.Tselyaev, S.Krewald, V.B.Soubbotin

Quasilocal Density Functional Theory in Nuclei and Its Extension to Include Pairing Correlations

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 132Sn, 208Pb; calculated binding energies, radii, neutron and proton separation energies. Density functional theory with pairing correlations.

doi: 10.1134/S1063778806070180
Citations: PlumX Metrics


2004SO14      Phys.Rev. C 69, 064312 (2004)

V.B.Soubbotin, V.I.Tselyaev, X.Vinas

Nuclear incompressibility in the quasilocal density functional theory

NUCLEAR STRUCTURE 16O, 28O, 40Ca, 90Zr, 208Pb; calculated giant monopole resonance energies, related parameters. Quasilocal density functional theory.

doi: 10.1103/PhysRevC.69.064312
Citations: PlumX Metrics


2003LI11      Yad.Fiz. 66, 584 (2003); Phys.Atomic Nuclei 66, 558 (2003)

E.V.Litvinova, S.P.Kamerdzhiev, V.I.Tselyaev

Temperature Generalization of the Quasiparticle Random-Phase Approximation with Allowance for a Continuum

NUCLEAR STRUCTURE 104,120Sn; calculated dipole photoabsorption σ vs excitation energy, resonance features. Continuum quasiparticle RPA.

doi: 10.1134/1.1563722
Citations: PlumX Metrics


2003SO03      Phys.Rev. C 67, 014324 (2003)

V.B.Soubbotin, V.I.Tselyaev, X.Vinas

Quasilocal density functional theory and its application within the extended Thomas-Fermi approximation

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 132Sn, 208Pb; calculated binding energies, radii, neutron and proton separation energies. Quasilocal density functional theory, other models compared.

doi: 10.1103/PhysRevC.67.014324
Citations: PlumX Metrics


2002KA57      Phys.Rev. C66, 044304 (2002)

S.P.Kamerdzhiev, V.I.Tselyaev

Excitations of the unstable nuclei 48Ni and 49Ni

NUCLEAR STRUCTURE 48,49Ni, 48Ca, 49Sc; calculated strength functions, resonance features. Continuum RPA and odd RPA.

doi: 10.1103/PhysRevC.66.044304
Citations: PlumX Metrics


2001KA06      Phys.Rev. C63, 034304 (2001)

S.P.Kamerdzhiev, R.J.Liotta, V.I.Tselyaev

Random Phase Approximation for Odd Nuclei and Its Application to the Description of the Electric Dipole Modes in 17O

NUCLEAR STRUCTURE 16,17O; calculated E1 resonance photoabsorption σ. Generalization of RPA for odd nuclei.

doi: 10.1103/PhysRevC.63.034304
Citations: PlumX Metrics


2000TS06      Bull.Rus.Acad.Sci.Phys. 64, 434 (2000)

V.I.Tselyaev

Integral Characteristics of Giant Resonances and Lorentz Distribution Parameters

NUCLEAR STRUCTURE 40Ca, 100Sn, 208Pb; calculated GDR widths, energies, strength distributions. Lorentz distribution.


1998KA29      Phys.Rev. C58, 172 (1998)

S.Kamerdzhiev, R.J.Liotta, E.Litvinova, V.Tselyaev

Continuum Quasiparticle Random-Phase Approximation Description of Isovector E1 Giant Resonances

NUCLEAR STRUCTURE 100,104,120,132Sn; calculated E1 photoabsorption σ; deduced continuum effect on giant resonances. Continuum RPA, forced consistency procedure.

doi: 10.1103/PhysRevC.58.172
Citations: PlumX Metrics


1998TS04      Yad.Fiz. 61, No 3, 447 (1998); Phys.Atomic Nuclei 61, 387 (1998)

V.I.Tselyaev

Model-Independent Formulas for the T Matrix Describing Inelastic Nucleon-Nucleus Scattering


1998TS06      Yad.Fiz. 61, No 5, 821 (1998); Phys.Atomic Nuclei 61, 739 (1998)

V.I.Tselyaev

Consistency Condition Beyond the Random-Phase Approximation


1998TS15      Bull.Rus.Acad.Sci.Phys. 62, 880 (1998)

V.I.Tselyaev, S.P.Kamerdzhiev, R.Liotta, E.V.Litvinova

Calculation of E1 Resonance by the ' QRPA + Continuum ' Model

NUCLEAR STRUCTURE 104,120Sn; calculated isovector E1 resonance strength distribution; deduced role of single-particle continuum. QRPA plus continuum model.


1997KA80      Fiz.Elem.Chastits At.Yadra 28, 333 (1997); Phys.Part.Nucl. 28, 134 (1997)

S.P.Kamerdzhiev, G.Ya.Tertychnyi, V.I.Tselyaev

The Method of Time-Ordered Graph Decoupling and Its Application to the Description of Giant Resonances in Magic Nuclei

NUCLEAR STRUCTURE 40,48Ca, 56Ni, 208Pb; calculated giant resonance E, Γ, photoabsorption σ. Time-ordered graph decoupling method.


1997TS09      Bull.Rus.Acad.Sci.Phys. 61, 627 (1997)

V.I.Tselyaev

Zero-Range Four-Body Interaction in the Extended Parametrization of Skyrme Forces


1994TS03      Bull.Rus.Acad.Sci.Phys. 58, 762 (1994)

V.I.Tselyaev

Hartree-Fock Approximation for Two-Particle Component of Kinetic Energy Operator for Center-of-Mass Motion

NUCLEAR STRUCTURE 16O, 40Ca, 90Zr, 208Pb; calculated binding energies per nucleon, effective momentum distribution functions. Hartree-Fock approach, Skyrme interaction, two-particle component of kinetic energy operator.


1993KA11      Nucl.Phys. A555, 90 (1993)

S.Kamerdzhiev, J.Speth, G.Tertychnyi, V.Tselyaev

Microscopic Description of the Giant Electric-Dipole Resonance in Magic Nuclei

NUCLEAR REACTIONS 40,48Ca(γ, X), E=10-32 MeV; 208Pb(γ, X), E ≈ 6-20 MeV; calculated photoabsorption σ(E). 40,48Ca, 208Pb deduced E1 resonances integral characteristics, giant resonances. Extended RPA approach.

doi: 10.1016/0375-9474(93)90315-O
Citations: PlumX Metrics


1993TS03      Bull.Rus.Acad.Sci.Phys. 57, 1691 (1993)

V.I.Tselyaev

Description of a Fermion System Involving Many-Body Interactions by the Green Function Method


1991KA26      Phys.Lett. 267B, 12 (1991)

S.P.Kamerdzhiev, G.Ya.Tertychnyi, V.I.Tselyaev

Calculations of E1 Resonances in 40Ca, 48Ca and 208Pb Including 1p1h(x) Phonon Configurations

NUCLEAR STRUCTURE 40,48Ca, 208Pb; calculated E1 resonances, Γ, sum rule strength. Microscopic model, (1px1h)+phonon configuration.

NUCLEAR REACTIONS 40,48Ca(γ, X), E=8-32 MeV; 208Pb(γ, X), E ≈ 6-20 MeV; calculated absorption σ(E). Microscopic model, (1px1h)+phonon configuration.

doi: 10.1016/0370-2693(91)90515-R
Citations: PlumX Metrics


1991KA42      Izv.Akad.Nauk SSSR, Ser.Fiz. 55, 49 (1991); Bull.Acad.Sci.USSR, Phys.Ser. 55, No.1, 45 (1991)

S.P.Kamerdzhiev, V.I.Tselyaev

Effects from Ground-State 2p2h Correlation on the M1 Resonance in 208Pb

NUCLEAR STRUCTURE 208Pb; calculated B(λ), isovector M1 resonance spreading width; deduced 2p-2h ground state correlation role. Microscopic model, 1p-1h coupling to phonon included.


1989TS04      Yad.Fiz. 50, 1252 (1989); Sov.J.Nucl.Phys. 50, 780 (1989)

V.I.Tselyaev

Description of Complex Configurations in Magic Nuclei with the Method of Chronological Decoupling of Diagrams

NUCLEAR STRUCTURE 209,207Pb, 209Bi, 207Tl; calculated levels, μ, spectroscopic factors, B(λ). 208Pb; calculated 1+ level features. Microscopic model.


1987TS02      Izv.Akad.Nauk SSSR, Ser.Fiz. 51, 77 (1987); Bull.Acad.Sci.USSR, Phys.Ser. 51, No.1, 72 (1987)

V.I.Tselyaev

Computation of 2p2h Configurations with Lipkin-Meshkov-Glik Model

NUCLEAR STRUCTURE N=2, 4, 8, 14, 30, 50; calculated excited to ground state energy ratios. Lipkin-Meshkov-Glik model.


1986KA48      Yad.Fiz. 44, 606 (1986)

S.P.Kamerdzhiev, V.I.Tselyaev

Single-Particle Characteristics in Problem taking Account of Complex Configurations

NUCLEAR STRUCTURE 208Pb; calculated neutron energy levels. Single particle motion, quasiparticle-phonon interaction.


1984TS10      Yad.Fiz. 39, 370 (1984); Sov.J.Nucl.Phys. 39, 233 (1984)

V.I.Tselyaev

The Choice of the Expansion Point in the Local Energy Approximation for the Mass Operator

NUCLEAR STRUCTURE 208Pb; calculated neutron particle, hole mass operator component functions; deduced expansion point choice role. Taylor series expansion.


Back to query form


Note: The following list of authors and aliases matches the search parameter V.Tselyaev: , V.I.TSELYAEV