NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = T.Kaneko

Found 46 matches.

Back to query form



2020KA40      Nucl.Instrum.Methods Phys.Res. B478, 218 (2020)

T.Kaneko, R.Usami, H.Morioka, Y.Saitoh, A.Chiba, K.Narumi

Electron-loss and destruction processes in collision of MeV/atom carbon cluster ions with rare gases

NUCLEAR REACTIONS He, Ne(C, X), E=2.5 MeV; calculated σ using the time-dependent quantum theory, assuming binary collision treatment and independent electron model.

doi: 10.1016/j.nimb.2020.06.031
Citations: PlumX Metrics


2006TS04      Comput.Phys.Commun. 175, 665 (2006)

S.Tsuno, T.Kaneko, Y.Kurihara, S.Odaka, K.Kato

GR@PPA 2.7 event generator for pp/p(p-bar) collisions

NUCLEAR REACTIONS 1H(p, X), (p-bar, X), E=high; calculated multi-jet production σ.

doi: 10.1016/j.cpc.2006.07.011
Citations: PlumX Metrics


2004NA10      Nucl.Phys. A734, 124 (2004)

Y.Nagame, H.Haba, K.Tsukada, M.Asai, A.Toyoshima, S.Goto, K.Akiyama, T.Kaneko, M.Sakama, M.Hirata, T.Yaita, I.Nishinaka, S.Ichikawa, H.Nakahara

Chemical studies of the heaviest elements

doi: 10.1016/j.nuclphysa.2004.01.021
Citations: PlumX Metrics


2004TS12      Phys.Rev. D 70, 111501 (2004)

N.Tsutsui, S.Aoki, M.Fukugita, S.Hashimoto, K.-I.Ishikawa, N.Ishizuka, Y.Iwasaki, K.Kanaya, T.Kaneko, Y.Kuramashi, M.Okawa, T.Onogi, Y.Taniguchi, A.Ukawa, T.Yoshie, and the CP-PACS and JLQCD Collaborations

Lattice QCD calculation of the proton decay matrix element in the continuum limit

NUCLEAR STRUCTURE 1H; calculated proton decay matrix element, scaling violation effect. Quenched lattice QCD.

doi: 10.1103/PhysRevD.70.111501
Citations: PlumX Metrics


2003AS01      Eur.Phys.J. A 16, 17 (2003)

M.Asai, K.Tsukada, S.Ichikawa, M.Sakama, H.Haba, Y.Nagame, I.Nishinaka, K.Akiyama, A.Toyoshima, T.Kaneko, Y.Oura, Y.Kojima, M.Shibata

Identification of the new isotope 241Bk

NUCLEAR REACTIONS 239Pu(6Li, 4n), E=34-42 MeV; measured prompt and delayed Eγ, Iγ, (X-ray)γ-, (recoil)γ-coin; deduced evidence for 241Bk. Isotope separator.

RADIOACTIVITY 241Bk(EC) [from 239Pu(6Li, 4n)]; measured Eγ, Iγ, (X-ray)γ-coin, T1/2; deduced ground-state configuration.

doi: 10.1140/epja/i2002-10112-y
Citations: PlumX Metrics


2002KA42      Prog.Theor.Phys.(Kyoto) 107, 833 (2002)

T.Kaneko, Y.C.Tang

Resonating-Group Calculations with New Cluster Wave Function for p + 3, 4He Elastic Scattering

NUCLEAR STRUCTURE 3H, 3,4He; calculated binding energies, radii. Cluster wave functions, resonating group method, comparison with data.

NUCLEAR REACTIONS 3,4He(p, p), E ≈ 3-12 MeV; calculated σ(θ), polarization. Cluster wave functions, resonating group method, comparison with data.

doi: 10.1143/PTP.107.833
Citations: PlumX Metrics


2000KA49      Few-Body Systems 29, 143 (2000)

T.Kaneko, Y.C.Tang

Study of 3He + Nucleus Scattering with a Simplified Resonating-Group Method

NUCLEAR REACTIONS 40Ca, 58Ni, 90Zr, 116,120Sn, 208Pb(3He, 3He), E=70-130 MeV; calculated σ(θ). Resonating-group method, comparisons with data.

doi: 10.1007/s006010070014
Citations: PlumX Metrics


1999KA29      Prog.Theor.Phys.(Kyoto) 101, 591 (1999)

T.Kaneko, Y.C.Tang

Study of α + Nucleus Scattering with a Simplified Resonating-Group Method

NUCLEAR REACTIONS 40Ca, 58Ni, 90Zr, 124Sn, 208Pb(α, α), E ≈ 100, 140 MeV; calculated σ(θ). Simplified resonating-group method, comparison with data.

doi: 10.1143/PTP.101.591
Citations: PlumX Metrics


1998KA07      Int.J.Mod.Phys. E7, 1 (1998)

T.Kaneko, Y.C.Tang

Simplified Resonating-Group Method for Light-Ion Scattering

doi: 10.1142/S0218301398000026
Citations: PlumX Metrics


1998OR02      Nucl.Instrum.Methods Phys.Res. A402, 402 (1998)

S.Oryu, E.Uzu, H.Sunahara, T.Yamada, G.Tabaru, T.Hino, T.Kaneko

3He(d, p)4He Reaction Calculation with Three-Body Faddeev Equations

NUCLEAR REACTIONS 3He(d, p), (polarized d, p), E=270 MeV; calculated σ(θ). Three-body Fadeev equations, microscopic Pauli correct method, resonating group method.

NUCLEAR STRUCTURE 5Li; calculated levels, J, π. Three-body Fadeev equations.

doi: 10.1016/S0168-9002(97)00880-2
Citations: PlumX Metrics


1997KA06      Nucl.Phys. A612, 204 (1997)

T.Kaneko, Y.C.Tang

Scattering of Deuterons by Nuclei with Breakup Effects

NUCLEAR REACTIONS 28Si, 40Ca(d, d), E=29.2 MeV; 58Ni(d, d), E=79.5 MeV; 120Sn, 208Pb(d, d), E=85 MeV; analyzed σ(θ). Microscopic resonating group method, direct deuteron breakup included.

doi: 10.1016/S0375-9474(96)00336-3
Citations: PlumX Metrics


1996KA10      Nucl.Phys. A599, 545 (1996)

T.Kaneko, Y.C.Tang

Analysis of Deuteron + Nucleus Scattering Data with a Simplified Resonating-Group Method

NUCLEAR REACTIONS 140Ce, 208Pb, 28Si, 58Ni, 90Zr(polarized d, d), E=52 MeV; 58Ni(polarized d, d), E=79.5 MeV; analyzed σ(θ), iT11(θ). 120Sn, 208Pb(d, d), E=85, 58.7 MeV; analyzed σ(θ); 40Ca(d, d), E=40, 60, 80 MeV; calculated σ(θ). Simplified resonating group method.

doi: 10.1016/0375-9474(95)00466-1
Citations: PlumX Metrics


1995GO33      Hyperfine Interactions 96, 63 (1995)

T.Goto, S.Koyama, T.Kaneko, S.Abe

Effects of Nitrogen and Vanadium on the 57Fe Hyperfine Field of RFe(12-x)V(x)N(y)(R = Y, Nd)

NUCLEAR REACTIONS 57Fe(γ, γ), E=14.4 keV; measured Mossbauer spectra; deduced nitrogen, vanadium atoms effect on 57Fe hyperfine fields at different crystallographic sites. Ternary RFe(12-x)V(x)N(y)(R=Y, Nd).

doi: 10.1007/BF02066272
Citations: PlumX Metrics


1995KA28      Nucl.Phys. A591, 209 (1995)

T.Kaneko, Y.C.Tang

Approximate Treatment of the Deuteron + Nucleus Interaction in the Resonating-Group Formulation

NUCLEAR REACTIONS 16O(d, d), E=30 MeV; analyzed σ(θ). 40Ca(polarized d, d), E=49.52 MeV; analyzed σ(θ), iT11(θ). Microscopic resonating group method.

doi: 10.1016/0375-9474(95)00181-Y
Citations: PlumX Metrics


1995KA60      Prog.Theor.Phys.(Kyoto) 94, 1061 (1995)

H.Kanada, T.Kaneko, Y.C.Tang

Scattering and Reaction Cross Sections in the p + α System with the Multiconfiguration Resonating-Group Method

NUCLEAR REACTIONS 4He(p, p), E=24.8-68 MeV; calculated reaction σ vs E, σ(θ). 4He(p, d), E=24.8-68 MeV; 4He(p, t), E=39.6 MeV; calculated σ(θ). Multi-configuration resonating group method.

doi: 10.1143/PTP.94.1061
Citations: PlumX Metrics


1995KA65      Few-Body Systems 18, 1 (1995)

T.Kaneko, H.Kanada, Y.C.Tang

Resonating-Group Study of Three-Nucleon Bound State and p + d Scattering

NUCLEAR REACTIONS 2H(p, p), E ≤ 32 MeV; calculated phase shifts vs E, σ(θ), reaction σ(E). Resonating group method, multi-configurations.

doi: 10.1007/s006010050001
Citations: PlumX Metrics


1993KA45      Prog.Theor.Phys.(Kyoto) 90, 1287 (1993)

T.Kaneko, Y.C.Tang

Analysis of Proton-Nucleus Scattering Data with a Simplified Resonating-Group Method

NUCLEAR REACTIONS 12C, 40Ca, 58Ni, 90Zr, 208Pb(polarized p, p), E=16-65 MeV; calculated σ(θ), analyzing power vs θ. Nonlocal optical model, simplified resonating group method.

doi: 10.1143/ptp/90.6.1287
Citations: PlumX Metrics


1993KA47      Prog.Theor.Phys.(Kyoto) 89, 1103 (1993)

H.Kanada, T.Kaneko, S.Nagata

Microscopic Study of Proton-4He Scattering with Complex Effective N-N Interaction

NUCLEAR REACTIONS 4He(p, p), (polarized p, p), E=51.9-117.6 MeV; analyzed σ(θ), analyzing power vs θ, reaction σ. Resonating group method, complex effective nucleon-nucleon potential.

doi: 10.1143/ptp/89.5.1103
Citations: PlumX Metrics


1993ON04      Hyperfine Interactions 78, 451 (1993)

H.Onodera, T.Kitai, M.Ohashi, Y.Yamaguchi, T.Kaneko

161Dy Mossbauer Study on Magnetic Properties in DyZn2 Intermetallics

NUCLEAR REACTIONS 161Dy(γ, γ), E=74.6 keV; measured Mossbauer spectra.

doi: 10.1007/BF00568173
Citations: PlumX Metrics


1992KA10      Phys.Rev. C45, 2409 (1992)

T.Kaneko, M.LeMere, Y.C.Tang

General Features of Nucleon-Nucleus Interaction in the Resonating-Group Formulation

NUCLEAR REACTIONS 40Ca(n, n), E=60 MeV; calculated σ(θ). Resonating group method, nonlocal K model.

doi: 10.1103/PhysRevC.45.2409
Citations: PlumX Metrics


1992KA21      Phys.Rev. C46, 298 (1992)

T.Kaneko, M.LeMere, Y.C.Tang

Analysis of Neutron + Nucleus Scattering Data with Nonlocal Optical Potentials Based on the Resonating-Group Formulation

NUCLEAR REACTIONS 12C, 16O, 28Si, 32S, 40Ca(n, n), (polarized n, n), E=13-40 MeV; analyzed σ(θ), analyzing power vs θ. Nonlocal optical model, resonating group formulation.

doi: 10.1103/PhysRevC.46.298
Citations: PlumX Metrics


1992KA34      Nucl.Phys. A548, 189 (1992)

T.Kaneko, Y.C.Tang

Resonating-Group Study of the Parameters in the Local Nucleon-Nucleus Optical-Model Potential

NUCLEAR REACTIONS 120Sn(polarized n, n), E=13.88 MeV; 120Sn(polarized p, p), E=39.67 MeV; calculated σ(θ), analyzing power vs θ. 120Sn(n, n), E=20 MeV; 48Ca(p, p), E=40 MeV; calculated σ(θ). Local optical model, resonating group study.

doi: 10.1016/0375-9474(92)90008-8
Citations: PlumX Metrics


1992KA41      Phys.Lett. 296B, 285 (1992)

T.Kaneko, Y.C.Tang

Approximate Resonating-Group Calculations with Woods-Saxon Target-Nucleus Wave Functions

NUCLEAR REACTIONS 40Ca(n, n), (polarized n, n), E=20, 40, 13.56 MeV; 16O(n, n), (polarized n, n), E=21.65 MeV; calculated σ(θ), analyzing power vs θ. Approximate resonating group calculations.

doi: 10.1016/0370-2693(92)91321-Y
Citations: PlumX Metrics


1991KA01      Phys.Rev. C43, 371 (1991)

H.Kanada, T.Kaneko, Y.C.Tang

Reaction Cross Sections in the Four-Nucleon System with the Multiconfiguration Resonating-Group Method

NUCLEAR REACTIONS 2H(d, X), E(cm) ≤ 14 MeV; calculated phase shifts, reaction σ vs E. 3H(t, X), E(cm) ≤ 18 MeV; calculated reaction σ vs E. Multi-configuration resonating group method.

doi: 10.1103/PhysRevC.43.371
Citations: PlumX Metrics


1991KA19      Phys.Rev. C44, 1588 (1991)

T.Kaneko, M.LeMere, Y.C.Tang

Approximate Treatment of the Nucleon-Nucleus Interaction in the Resonating-Group Formulation

NUCLEAR REACTIONS 4He(n, n), E ≤ 50 MeV; 40Ca, 16O(n, n), E ≤ 30 MeV; calculated phase shifts vs E, σ(θ). 40Ca(n, n), E=4.2 MeV; calculated σ(θ). 40Ca(n, n), E=10, 30 MeV; calculated P(θ). Resonating group model.

doi: 10.1103/PhysRevC.44.1588
Citations: PlumX Metrics


1991KA38      Few-Body Systems 11, 121 (1991)

T.Kaneko, H.Kanada, Y.C.Tang

Multi-Configuration Resonating-Group Study of the Three-Nucleon System

NUCLEAR REACTIONS, ICPND 2H(p, p), E ≤ 24 MeV; calculated phase shifts, reaction σ(E), σ(θ). Multi-configuration resonating group.

doi: 10.1007/BF01318557
Citations: PlumX Metrics


1990MO07      Nucl.Phys. A510, 173 (1990)

C.B.Moon, J.C.Kim, J.U.Kwon, B.N.Sung, K.Furuno, T.Komatsubara, T.Hosoda, T.Kaneko, S.C.Jeong, I.Kurniawan, T.Aoki

The Band Structure and Triaxial Shape in 118Xe

NUCLEAR REACTIONS 92Mo(29Si, n2p), E=110 MeV; measured Eγ, Iγ, Iγ(θ), γγ-coin. 118Xe deduced levels, J, π, band structure. Cranked shell model calculation. Enriched target, Ge, Ge(Li) detectors.

doi: 10.1016/0375-9474(90)90294-V
Citations: PlumX Metrics


1989KA39      Nucl.Phys. A504, 529 (1989)

H.Kanada, T.Kaneko, Y.C.Tang

Multi-Configuration Resonating-Group Study of the Five-Nucleon System

NUCLEAR REACTIONS, ICPND 3He(d, d), E=10 MeV; 4He(p, p), E=28.08 MeV; calculated phase shifts, total reaction σ(E). Multi-configuration resonating group study.

doi: 10.1016/0375-9474(89)90556-3
Citations: PlumX Metrics


1988KA25      Phys.Rev. C38, 2013 (1988)

H.Kanada, T.Kaneko, Y.C.Tang

Convergence Features in the Pseudostate Theory of the d + α System

NUCLEAR REACTIONS, ICPND 4He(d, d), E=2-40 MeV; calculated phase shift, σ(θ), σ(E). Pseudostate method, resonating group formulation.

doi: 10.1103/PhysRevC.38.2013
Citations: PlumX Metrics


1988MO28      Z.Phys. A331, 111 (1988)

C.B.Moon, J.C.Kim, K.Furuno, T.Komatsubara, T.Hosoda, T.Kaneko, S.C.Jeong, I.Kurniawan, T.Aoki

Band Structure of 118Xe

NUCLEAR REACTIONS 92Mo(29Si, n2p), E=110 MeV; measured γγ-coin, γ(θ). 118Xe deduced levels, J, π, band structure.


1987KA22      Phys.Lett. 192B, 259 (1987)

T.Kaneko, M.Shirata, H.Kanada, Y.C.Tang

Neutron and Proton Form Factors of 7Li and 7Be

NUCLEAR STRUCTURE 7Li, 7Be; calculated point proton, neutron form factors, rms radii, spectroscopic quadrupole moments. Multi-configuration resonating group.

doi: 10.1016/0370-2693(87)90101-8
Citations: PlumX Metrics


1987KO35      J.Phys.Soc.Jpn. 56, 2263 (1987)

Y.Kohori, T.Kohara, H.Shibai, Y.Oda, T.Kaneko, Y.Kitaoka, K.Asayama

195Pt Knight Shift in the Heavy Fermion Superconductor UPt3

NUCLEAR MOMENTS 195Pt; measured NMR; deduced Knight shift in UPt3.

doi: 10.1143/JPSJ.56.2263
Citations: PlumX Metrics


1986KA21      Phys.Rev. C34, 22 (1986)

H.Kanada, T.Kaneko, Y.C.Tang

Microscopic Theory of the 4He System with Multichannel Resonating-Group Method

NUCLEAR REACTIONS 2H(d, d), E(cm)=2.23-6.95 MeV; 3H(p, p), E(cm)=3.11-14.61 MeV; 3H(p, n), E=7.1, 10.2 MeV; 3H(p, d), E=10.2 MeV; calculated σ(θ). 3H(polarized p, p), E=3.11-10.2 MeV; 3He(polarized n, n), E=6, 12.83 MeV; calculated polarization vs θ. Multi-channel resonating group method.

doi: 10.1103/PhysRevC.34.22
Citations: PlumX Metrics


1986KA28      Nucl.Phys. A457, 93 (1986)

H.Kanada, T.Kaneko, P.N.Shen, Y.C.Tang

Characteristic Features of Specific Distortion in Light Nuclear Systems

NUCLEAR REACTIONS 3H(d, d), E ≈ 0-18 MeV; calculated phase shifts vs E. Deuteron cluster in (3/2) channel spin state.

doi: 10.1016/0375-9474(86)90521-X
Citations: PlumX Metrics


1986KA30      Phys.Rev. C34, 771 (1986)

T.Kaneko, M.Shirata, H.Kanada, Y.C.Tang

Microscopic Theory of the 3H + α System with the Multichannel Resonating-Group Method

NUCLEAR STRUCTURE 7Li; calculated ground state energy, rms radius, spectroscopic quadrupole moment. Multi-channel resonating group method, t+α cluster.

NUCLEAR REACTIONS 3H(α, α), E ≤ 15 MeV; calculated σ(θ), polarization vs θ, phase shifts; deduced distortion effects role. Multichannel resonating group method.

doi: 10.1103/PhysRevC.34.771
Citations: PlumX Metrics


1986KO35      J.Phys.Soc.Jpn. 55, 3819 (1986)

Y.Koike, T.Kaneko, M.Nomoto

Deuteron Distortion Effects in the (d, d) Scattering and (d, p) Reaction

NUCLEAR REACTIONS 28Si(d, d), (d, p), E=18 MeV; calculated σ(θ); deduced deuteron distortion effects. DWBA.

doi: 10.1143/JPSJ.55.3819
Citations: PlumX Metrics


1986SH12      Phys.Rev. C33, 1214 (1986)

P.N.Shen, Y.C.Tang, H.Kanada, T.Kaneko

Pseudostate Calculations in n + t and p + 3He Systems

NUCLEAR REACTIONS 3H(n, n), E ≈ 0-36 MeV; calculated phase shifts. 3He(p, p), E=22.5-35.625 MeV; calculated σ(θ); deduced specific distortion. Resonating group method.

doi: 10.1103/PhysRevC.33.1214
Citations: PlumX Metrics


1985KA20      Nucl.Phys. A444, 209 (1985)

H.Kanada, T.Kaneko, S.Saito, Y.C.Tang

Microscopic Study of the d + α Scattering System with the Multi-Channel Resonating-Group Method

NUCLEAR REACTIONS 4He(d, d), E ≈ 0-30 MeV; calculated phase shifts vs E. 4He(polarized d, d), E=1.957-37.33 MeV; calculated σ(θ), vector, tensor polarizations vs θ. Multi-channel resonating group method, α+d cluster, distortion effects.

doi: 10.1016/0375-9474(85)90347-1
Citations: PlumX Metrics


1982KA11      Nucl.Phys. A380, 87 (1982)

H.Kanada, T.Kaneko, Y.C.Tang

Specific Distortion Effects in 3H + α and 3He + α Systems

NUCLEAR STRUCTURE 3H, 3He, 7Li; calculated charge form factors. Resonating group method.

NUCLEAR REACTIONS 3H, 3He(α, α), E=0-14 MeV; calculated phase shifts. 4He(t, t), E=1.22, 1.7 MeV; 4He(3He, 3He), E=1.41, 2.06 MeV; calculated σ(θ). 4He(t, t), E=6.17 MeV; calculated σ(θ), P(θ). Resonating group method.

doi: 10.1016/0375-9474(82)90584-X
Citations: PlumX Metrics


1982KA24      Nucl.Phys. A389, 285 (1982)

H.Kanada, T.Kaneko, Y.C.Tang

Specific Distortion Effects in the d + α System and Charge Form Factor of 6Li

NUCLEAR REACTIONS 4He(d, d), (polarized d, d), E=3-25 MeV; calculated phase shifts, σ(θ), vector, tensor polarization; deduced large deuteron cluster compressibility. Resonating group method.

NUCLEAR STRUCTURE 6Li; calculated charge form factor, rms charge radius; deduced large deuteron cluster compressibility role. Resonating group method.

doi: 10.1016/0375-9474(82)90520-6
Citations: PlumX Metrics


1980KA15      Prog.Theor.Phys.(Kyoto) 63, 842 (1980)

H.Kanada, T.Kaneko, H.Nishioka, S.Saito

Microscopic Study of d-4He Scattering by RGM with Distortion Effect, phase shifts; deduced importance of deuteron distortion. Resonating group method, realistic effective nuclear interactions.

doi: 10.1143/PTP.63.842
Citations: PlumX Metrics


1980NI07      Prog.Theor.Phys.(Kyoto) 63, 438 (1980)

H.Nishioka, S.Saito, H.Kanada, T.Kaneko

Study of Distortion Effects in the Elastic d-4He Scattering by Orthogonality Condition Model

NUCLEAR REACTIONS 4He(d, d), E(cm)=2-16 MeV; calculated phase shifts. Variational method, deuteron distortion effect, orthogonality condition.

doi: 10.1143/PTP.63.438
Citations: PlumX Metrics


1979KA17      Prog.Theor.Phys. 61, 1327 (1979)

H.Kanada, T.Kaneko, S.Nagata, M.Nomoto

Microscopic Study of Nucleon-4He Scattering and Effective Nuclear Potentials

NUCLEAR REACTIONS 4He(n, n), E(cm) ≈ 0-15 MeV; calculated s-, p-wave phase shifts, σ(E). 4He(p, p), Ep=0-80 MeV; calculated s-, p-wave phase shifts, σ(θ), P(θ). Single-channel resonating group method, realistic effective two-body nuclear potentials.

doi: 10.1143/PTP.61.1327
Citations: PlumX Metrics


1974MI14      Nucl.Phys. A230, 98 (1974)

K.Miyano, M.Sekikawa, T.Kaneko, M.Nomoto

Reactions on 209Bi Induced by Intermediate Energy Protons and the Effect of Direct Reactions

NUCLEAR REACTIONS 209Bi(p, 3n), (p, 4n), (p, p3n), E=18-52 MeV; measured σ(E), mean recoil ion ranges.

doi: 10.1016/0375-9474(74)90532-6
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetB0035.


1973KA46      Progr.Theor.Phys. 50, 1765 (1973)

T.Kaneko

Spin-Orbit Interaction in Heavy-Ion Elastic Scattering

NUCLEAR REACTIONS 14N(14N, 14N), E=17.7 MeV; 14N(16O, 16O), E=18.3 MeV; calculated σ(θ).

doi: 10.1143/PTP.50.1765
Citations: PlumX Metrics


1970KA41      Progr.Theor.Phys. 44, 292 (1970)

T.Kaneko

Form Factor of Heavy Ion Transfer Reaction at Low Energy Region

NUCLEAR REACTIONS 14N(14N, 13N), E=8 MeV cms; calculated σ(θ), form factor.

doi: 10.1143/PTP.44.292
Citations: PlumX Metrics


Back to query form