NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of March 21, 2024.

Search: Author = M.Sharma

Found 253 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2024AC01      Phys.Rev. C 109, 014911 (2024)

S.Acharya, D.Adamova, G.Aglieri Rinella, M.Agnello, N.Agrawal, Z.Ahammed, S.Ahmad, S.U.Ahn, I.Ahuja, A.Akindinov, M.Al-Turany, D.Aleksandrov, B.Alessandro, H.M.Alfanda, R.Alfaro Molina, B.Ali, A.Alici, N.Alizadehvandchali, A.Alkin, J.Alme, G.Alocco, T.Alt, A.R.Altamura, I.Altsybeev, J.R.Alvarado, M.N.Anaam, C.Andrei, N.Andreou, A.Andronic, V.Anguelov, F.Antinori, P.Antonioli, N.Apadula, L.Aphecetche, H.Appelshauser, C.Arata, S.Arcelli, M.Aresti, R.Arnaldi, J.G.M.C.A.Arneiro, I.C.Arsene, M.Arslandok, A.Augustinus, R.Averbeck, M.D.Azmi, H.Baba, A.Badala, J.Bae, Y.W.Baek, X.Bai, R.Bailhache, Y.Bailung, A.Balbino, A.Baldisseri, B.Balis, D.Banerjee, Z.Banoo, R.Barbera, F.Barile, L.Barioglio, M.Barlou, B.Barman, G.G.Barnafoldi, L.S.Barnby, V.Barret, L.Barreto, C.Bartels, K.Barth, E.Bartsch, N.Bastid, S.Basu, G.Batigne, D.Battistini, B.Batyunya, D.Bauri, J.L.Bazo Alba, I.G.Bearden, C.Beattie, P.Becht, D.Behera, I.Belikov, A.D.C.Bell Hechavarria, F.Bellini, R.Bellwied, S.Belokurova, Y.A.V.Beltran, G.Bencedi, S.Beole, Y.Berdnikov, A.Berdnikova, L.Bergmann, M.G.Besoiu, L.Betev, P.P.Bhaduri, A.Bhasin, M.A.Bhat, B.Bhattacharjee, L.Bianchi, N.Bianchi, J.Bielcik, J.Bielcikova, J.Biernat, A.P.Bigot, A.Bilandzic, G.Biro, S.Biswas, N.Bize, J.T.Blair, D.Blau, M.B.Blidaru, N.Bluhme, C.Blume, G.Boca, F.Bock, T.Bodova, A.Bogdanov, S.Boi, J.Bok, L.Boldizsar, M.Bombara, P.M.Bond, G.Bonomi, H.Borel, A.Borissov, A.G.Borquez Carcamo, H.Bossi, E.Botta, Y.E.M.Bouziani, L.Bratrud, P.Braun-Munzinger, M.Bregant, M.Broz, G.E.Bruno, M.D.Buckland, D.Budnikov, H.Buesching, S.Bufalino, P.Buhler, N.Burmasov, Z.Buthelezi, A.Bylinkin, S.A.Bysiak, M.Cai, H.Caines, A.Caliva, E.Calvo Villar, J.M.M.Camacho, P.Camerini, F.D.M.Canedo, S.L.Cantway, M.Carabas, A.A.Carballo, F.Carnesecchi, R.Caron, L.A.D.Carvalho, J.Castillo Castellanos, F.Catalano, C.Ceballos Sanchez, I.Chakaberia, P.Chakraborty, S.Chandra, S.Chapeland, M.Chartier, S.Chattopadhyay, S.Chattopadhyay, T.Cheng, C.Cheshkov, B.Cheynis, V.Chibante Barroso, D.D.Chinellato, E.S.Chizzali, J.Cho, S.Cho, P.Chochula, D.Choudhury, P.Christakoglou, C.H.Christensen, P.Christiansen, T.Chujo, M.Ciacco, C.Cicalo, F.Cindolo, M.R.Ciupek, G.Clai, F.Colamaria, J.S.Colburn, D.Colella, M.Colocci, M.Concas, G.Conesa Balbastre, Z.Conesa del Valle, G.Contin, J.G.Contreras, M.L.Coquet, P.Cortese, M.R.Cosentino, F.Costa, S.Costanza, C.Cot, J.Crkovska, P.Crochet, R.Cruz-Torres, P.Cui, A.Dainese, M.C.Danisch, A.Danu, P.Das, P.Das, S.Das, A.R.Dash, S.Dash, A.De Caro, G.de Cataldo, J.de Cuveland, A.De Falco, D.De Gruttola, N.De Marco, C.De Martin, S.De Pasquale, R.Deb, R.Del Grande, L.Dello Stritto, W.Deng, P.Dhankher, D.Di Bari, A.Di Mauro, B.Diab, R.A.Diaz, T.Dietel, Y.Ding, J.Ditzel, R.Divia, D.U.Dixit, O.Djuvsland, U.Dmitrieva, A.Dobrin, B.Donigus, J.M.Dubinski, A.Dubla, S.Dudi, P.Dupieux, M.Durkac, N.Dzalaiova, T.M.Eder, R.J.Ehlers, F.Eisenhut, R.Ejima, D.Elia, B.Erazmus, F.Ercolessi, B.Espagnon, G.Eulisse, D.Evans, S.Evdokimov, L.Fabbietti, M.Faggin, J.Faivre, F.Fan, W.Fan, A.Fantoni, M.Fasel, P.Fecchio, A.Feliciello, G.Feofilov, A.Fernandez Tellez, L.Ferrandi, M.B.Ferrer, A.Ferrero, C.Ferrero, A.Ferretti, V.J.G.Feuillard, V.Filova, D.Finogeev, F.M.Fionda, E.Flatland, F.Flor, A.N.Flores, S.Foertsch, I.Fokin, S.Fokin, E.Fragiacomo, E.Frajna, U.Fuchs, N.Funicello, C.Furget, A.Furs, T.Fusayasu, J.J.Gaardhoje, M.Gagliardi, A.M.Gago, T.Gahlaut, C.D.Galvan, D.R.Gangadharan, P.Ganoti, C.Garabatos, T.Garcia Chavez, E.Garcia-Solis, C.Gargiulo, P.Gasik, A.Gautam, M.B.Gay Ducati, M.Germain, A.Ghimouz, C.Ghosh, M.Giacalone, G.Gioachin, P.Giubellino, P.Giubilato, A.M.C.Glaenzer, P.Glassel, E.Glimos, D.J.Q.Goh, V.Gonzalez, M.Gorgon, K.Goswami, S.Gotovac, V.Grabski, L.K.Graczykowski, E.Grecka, A.Grelli, C.Grigoras, V.Grigoriev, S.Grigoryan, F.Grosa, J.F.Grosse-Oetringhaus, R.Grosso, D.Grund, N.A.Grunwald, G.G.Guardiano, R.Guernane, M.Guilbaud, K.Gulbrandsen, T.Gundem, T.Gunji, W.Guo, A.Gupta, R.Gupta, R.Gupta, K.Gwizdziel, L.Gyulai, C.Hadjidakis, F.U.Haider, S.Haidlova, H.Hamagaki, A.Hamdi, Y.Han, B.G.Hanley, R.Hannigan, J.Hansen, M.R.Haque, J.W.Harris, A.Harton, H.Hassan, D.Hatzifotiadou, P.Hauer, L.B.Havener, S.T.Heckel, E.Hellbar, H.Helstrup, M.Hemmer, T.Herman, G.Herrera Corral, F.Herrmann, S.Herrmann, K.F.Hetland, B.Heybeck, H.Hillemanns, B.Hippolyte, F.W.Hoffmann, B.Hofman, G.H.Hong, M.Horst, A.Horzyk, Y.Hou, P.Hristov, C.Hughes, P.Huhn, L.M.Huhta, T.J.Humanic, A.Hutson, D.Hutter, R.Ilkaev, H.Ilyas, M.Inaba, G.M.Innocenti, M.Ippolitov, A.Isakov, T.Isidori, M.S.Islam, M.Ivanov, M.Ivanov, V.Ivanov, K.E.Iversen, M.Jablonski, B.Jacak, N.Jacazio, P.M.Jacobs, S.Jadlovska, J.Jadlovsky, S.Jaelani, C.Jahnke, M.J.Jakubowska, M.A.Janik, T.Janson, S.Ji, S.Jia, A.A.P.Jimenez, F.Jonas, D.M.Jones, J.M.Jowett, J.Jung, M.Jung, A.Junique, A.Jusko, M.J.Kabus, J.Kaewjai, P.Kalinak, A.S.Kalteyer, A.Kalweit, V.Kaplin, A.Karasu Uysal, D.Karatovic, O.Karavichev, T.Karavicheva, P.Karczmarczyk, E.Karpechev, U.Kebschull, R.Keidel, D.L.D.Keijdener, M.Keil, B.Ketzer, S.S.Khade, A.M.Khan, S.Khan, A.Khanzadeev, Y.Kharlov, A.Khatun, A.Khuntia, B.Kileng, B.Kim, C.Kim, D.J.Kim, E.J.Kim, J.Kim, J.S.Kim, J.Kim, J.Kim, M.Kim, S.Kim, T.Kim, K.Kimura, S.Kirsch, I.Kisel, S.Kiselev, A.Kisiel, J.P.Kitowski, J.L.Klay, J.Klein, S.Klein, C.Klein-Bosing, M.Kleiner, T.Klemenz, A.Kluge, A.G.Knospe, C.Kobdaj, T.Kollegger, A.Kondratyev, N.Kondratyeva, E.Kondratyuk, J.Konig, S.A.Konigstorfer, P.J.Konopka, G.Kornakov, M.Korwieser, S.D.Koryciak, A.Kotliarov, V.Kovalenko, M.Kowalski, V.Kozhuharov, I.Kralik, A.Kravcakova, L.Krcal, M.Krivda, F.Krizek, K.Krizkova Gajdosova, M.Kroesen, M.Kruger, D.M.Krupova, E.Kryshen, V.Kucera, C.Kuhn, P.G.Kuijer, T.Kumaoka, D.Kumar, L.Kumar, N.Kumar, S.Kumar, S.Kundu, P.Kurashvili, A.Kurepin, A.B.Kurepin, A.Kuryakin, S.Kushpil, M.J.Kweon, Y.Kwon, S.L.La Pointe, P.La Rocca, A.Lakrathok, M.Lamanna, A.R.Landou, R.Langoy, P.Larionov, E.Laudi, L.Lautner, R.Lavicka, R.Lea, H.Lee, I.Legrand, G.Legras, J.Lehrbach, T.M.Lelek, R.C.Lemmon, I.Leon Monzon, M.M.Lesch, E.D.Lesser, P.Levai, X.Li, J.Lien, R.Lietava, I.Likmeta, B.Lim, S.H.Lim, V.Lindenstruth, A.Lindner, C.Lippmann, D.H.Liu, J.Liu, G.S.S.Liveraro, I.M.Lofnes, C.Loizides, S.Lokos, J.Lomker, P.Loncar, X.Lopez, E.Lopez Torres, P.Lu, F.V.Lugo, J.R.Luhder, M.Lunardon, G.Luparello, Y.G.Ma, M.Mager, A.Maire, E.M.Majerz, M.V.Makariev, M.Malaev, G.Malfattore, N.M.Malik, Q.W.Malik, S.K.Malik, L.Malinina, D.Mallick, N.Mallick, G.Mandaglio, S.K.Mandal, V.Manko, F.Manso, V.Manzari, Y.Mao, R.W.Marcjan, G.V.Margagliotti, A.Margotti, A.Marin, C.Markert, P.Martinengo, M.I.Martinez, G.Martinez Garcia, M.P.P.Martins, S.Masciocchi, M.Masera, A.Masoni, L.Massacrier, O.Massen, A.Mastroserio, O.Matonoha, S.Mattiazzo, A.Matyja, C.Mayer, A.L.Mazuecos, F.Mazzaschi, M.Mazzilli, J.E.Mdhluli, Y.Melikyan, A.Menchaca-Rocha, J.E.M.Mendez, E.Meninno, A.S.Menon, M.Meres, S.Mhlanga, Y.Miake, L.Micheletti, D.L.Mihaylov, K.Mikhaylov, A.N.Mishra, D.Miskowiec, A.Modak, B.Mohanty, M.Mohisin Khan, M.A.Molander, S.Monira, C.Mordasini, D.A.Moreira De Godoy, I.Morozov, A.Morsch, T.Mrnjavac, V.Muccifora, S.Muhuri, J.D.Mulligan, A.Mulliri, M.G.Munhoz, R.H.Munzer, H.Murakami, S.Murray, L.Musa, J.Musinsky, J.W.Myrcha, B.Naik, A.I.Nambrath, B.K.Nandi, R.Nania, E.Nappi, A.F.Nassirpour, A.Nath, C.Nattrass, M.N.Naydenov, A.Neagu, A.Negru, L.Nellen, R.Nepeivoda, S.Nese, G.Neskovic, N.Nicassio, B.S.Nielsen, E.G.Nielsen, S.Nikolaev, S.Nikulin, V.Nikulin, F.Noferini, S.Noh, P.Nomokonov, J.Norman, N.Novitzky, P.Nowakowski, A.Nyanin, J.Nystrand, M.Ogino, S.Oh, A.Ohlson, V.A.Okorokov, J.Oleniacz, A.C.Oliveira Da Silva, A.Onnerstad, C.Oppedisano, A.Ortiz Velasquez, J.Otwinowski, M.Oya, K.Oyama, Y.Pachmayer, S.Padhan, D.Pagano, G.Paic, S.Paisano-Guzman, A.Palasciano, S.Panebianco, H.Park, H.Park, J.Park, J.E.Parkkila, Y.Patley, R.N.Patra, B.Paul, H.Pei, T.Peitzmann, X.Peng, M.Pennisi, S.Perciballi, D.Peresunko, G.M.Perez, Y.Pestov, V.Petrov, M.Petrovici, R.P.Pezzi, S.Piano, M.Pikna, P.Pillot, O.Pinazza, L.Pinsky, C.Pinto, S.Pisano, M.Ploskon, M.Planinic, F.Pliquett, M.G.Poghosyan, B.Polichtchouk, S.Politano, N.Poljak, A.Pop, S.Porteboeuf-Houssais, V.Pozdniakov, I.Y.Pozos, K.K.Pradhan, S.K.Prasad, S.Prasad, R.Preghenella, F.Prino, C.A.Pruneau, I.Pshenichnov, M.Puccio, S.Pucillo, Z.Pugelova, S.Qiu, L.Quaglia, S.Ragoni, A.Rai, A.Rakotozafindrabe, L.Ramello, F.Rami, T.A.Rancien, M.Rasa, S.S.Rasanen, R.Rath, M.P.Rauch, I.Ravasenga, K.F.Read, C.Reckziegel, A.R.Redelbach, K.Redlich, C.A.Reetz, H.D.Regules-Medel, A.Rehman, F.Reidt, H.A.Reme-Ness, Z.Rescakova, K.Reygers, A.Riabov, V.Riabov, R.Ricci, M.Richter, A.A.Riedel, W.Riegler, A.G.Riffero, C.Ristea, M.V.Rodriguez, M.Rodriguez Cahuantzi, S.A.Rodriguez Ramirez, K.Roed, R.Rogalev, E.Rogochaya, T.S.Rogoschinski, D.Rohr, D.Rohrich, P.F.Rojas, S.Rojas Torres, P.S.Rokita, G.Romanenko, F.Ronchetti, A.Rosano, E.D.Rosas, K.Roslon, A.Rossi, A.Roy, S.Roy, N.Rubini, D.Ruggiano, R.Rui, P.G.Russek, R.Russo, A.Rustamov, E.Ryabinkin, Y.Ryabov, A.Rybicki, H.Rytkonen, J.Ryu, W.Rzesa, O.A.M.Saarimaki, S.Sadhu, S.Sadovsky, J.Saetre, K.Safarik, P.Saha, S.K.Saha, S.Saha, B.Sahoo, B.Sahoo, R.Sahoo, S.Sahoo, D.Sahu, P.K.Sahu, J.Saini, K.Sajdakova, S.Sakai, M.P.Salvan, S.Sambyal, D.Samitz, I.Sanna, T.B.Saramela, P.Sarma, V.Sarritzu, V.M.Sarti, M.H.P.Sas, S.Sawan, J.Schambach, H.S.Scheid, C.Schiaua, R.Schicker, F.Schlepper, A.Schmah, C.Schmidt, H.R.Schmidt, M.O.Schmidt, M.Schmidt, N.V.Schmidt, A.R.Schmier, R.Schotter, A.Schroter, J.Schukraft, K.Schweda, G.Scioli, E.Scomparin, J.E.Seger, Y.Sekiguchi, D.Sekihata, M.Selina, I.Selyuzhenkov, S.Senyukov, J.J.Seo, D.Serebryakov, L.Serksnyte, A.Sevcenco, T.J.Shaba, A.Shabetai, R.Shahoyan, A.Shangaraev, A.Sharma, B.Sharma, D.Sharma, H.Sharma, M.Sharma, S.Sharma, S.Sharma, U.Sharma, A.Shatat, O.Sheibani, K.Shigaki, M.Shimomura, J.Shin, S.Shirinkin, Q.Shou, Y.Sibiriak, S.Siddhanta, T.Siemiarczuk, T.F.Silva, D.Silvermyr, T.Simantathammakul, R.Simeonov, B.Singh, B.Singh, K.Singh, R.Singh, R.Singh, R.Singh, S.Singh, V.K.Singh, V.Singhal, T.Sinha, B.Sitar, M.Sitta, T.B.Skaali, G.Skorodumovs, M.Slupecki, N.Smirnov, R.J.M.Snellings, E.H.Solheim, J.Song, C.Sonnabend, F.Soramel, A.B.Soto-hernandez, R.Spijkers, I.Sputowska, J.Staa, J.Stachel, I.Stan, P.J.Steffanic, S.F.Stiefelmaier, D.Stocco, I.Storehaug, P.Stratmann, S.Strazzi, A.Sturniolo, C.P.Stylianidis, A.A.P.Suaide, C.Suire, M.Sukhanov, M.Suljic, R.Sultanov, V.Sumberia, S.Sumowidagdo, S.Swain, I.Szarka, M.Szymkowski, S.F.Taghavi, G.Taillepied, J.Takahashi, G.J.Tambave, S.Tang, Z.Tang, J.D.Tapia Takaki, N.Tapus, L.A.Tarasovicova, M.G.Tarzila, G.F.Tassielli, A.Tauro, A.Tavira Garcia, G.Tejeda Munoz, A.Telesca, L.Terlizzi, C.Terrevoli, S.Thakur, D.Thomas, A.Tikhonov, N.Tiltmann, A.R.Timmins, M.Tkacik, T.Tkacik, A.Toia, R.Tokumoto, K.Tomohiro, N.Topilskaya, M.Toppi, T.Tork, P.V.Torres, V.V.Torres, A.G.Torres Ramos, A.Trifiro, A.S.Triolo, S.Tripathy, T.Tripathy, S.Trogolo, V.Trubnikov, W.H.Trzaska, T.P.Trzcinski, A.Tumkin, R.Turrisi, T.S.Tveter, K.Ullaland, B.Ulukutlu, A.Uras, G.L.Usai, M.Vala, N.Valle, L.V.R.van Doremalen, M.van Leeuwen, C.A.van Veen, R.J.G.van Weelden, P.Vande Vyvre, D.Varga, Z.Varga, M.Vasileiou, A.Vasiliev, O.Vazquez Doce, O.Vazquez Rueda, V.Vechernin, E.Vercellin, S.Vergara Limon, R.Verma, L.Vermunt, R.Vertesi, M.Verweij, L.Vickovic, Z.Vilakazi, O.Villalobos Baillie, A.Villani, A.Vinogradov, T.Virgili, M.M.O.Virta, V.Vislavicius, A.Vodopyanov, B.Volkel, M.A.Volkl, K.Voloshin, S.A.Voloshin, G.Volpe, B.von Haller, I.Vorobyev, N.Vozniuk, J.Vrlakova, J.Wan, C.Wang, D.Wang, Y.Wang, Y.Wang, A.Wegrzynek, F.T.Weiglhofer, S.C.Wenzel, J.P.Wessels, J.Wiechula, J.Wikne, G.Wilk, J.Wilkinson, G.A.Willems, B.Windelband, M.Winn, J.R.Wright, W.Wu, Y.Wu, R.Xu, A.Yadav, A.K.Yadav, S.Yalcin, Y.Yamaguchi, S.Yang, S.Yano, Z.Yin, I.-K.Yoo, J.H.Yoon, H.Yu, S.Yuan, A.Yuncu, V.Zaccolo, C.Zampolli, F.Zanone, N.Zardoshti, A.Zarochentsev, P.Zavada, N.Zaviyalov, M.Zhalov, B.Zhang, C.Zhang, L.Zhang, S.Zhang, X.Zhang, Y.Zhang, Z.Zhang, M.Zhao, V.Zherebchevskii, Y.Zhi, D.Zhou, Y.Zhou, J.Zhu, Y.Zhu, S.C.Zugravel, N.Zurlo

System-size dependence of the hadronic rescattering effect at energies available at the CERN Large Hadron Collider

doi: 10.1103/PhysRevC.109.014911
Citations: PlumX Metrics


2024AS01      Nucl.Phys. A1041, 122786 (2024)

M.S.Asnain, M.K.Sharma, Mohd.Shuaib, A.Siddique, I.Majeed Bhat, B.P.Singh, R.Prasad

Investigating the influence of input angular momentum on independence hypothesis in heavy-ion induced fusion reactions

NUCLEAR REACTIONS 159Tb(18O, X), 165Ho(12C, X), E=50-100 MeV; analyzed available data; deduced a channel wise analysis of σ data for evaporation residues within the framework of statistical model code PACE4.

doi: 10.1016/j.nuclphysa.2023.122786
Citations: PlumX Metrics


2023CH39      Phys.Rev. C 108, L021601 (2023)

S.Chopra, P.O.Hess, M.K.Sharma

Conspicuous role of the neck-length parameter for future superheavy element discoveries

NUCLEAR REACTIONS 93Nb(12C, X)105Ag, E*=40.959, 54.067 MeV;172Yb(48Ca, X)220Th, E*=35.4 MeV;235U(11B, X)246Bk, E*=35-58 MeV; calculated neck-length parameter for different decay channels. Calculations within within the framework of the dynamical cluster-decay model (DCM).

doi: 10.1103/PhysRevC.108.L021601
Citations: PlumX Metrics


2023GR10      Phys.Rev. C 108, 064607 (2023)

N.Grover, I.Sharma, M.Singh Gautam, M.K.Sharma, P.K.Raina

Fusion and decay dynamics of 6Li + 120Sn and 7Li + 119Sn reactions across the Coulomb barrier

doi: 10.1103/PhysRevC.108.064607
Citations: PlumX Metrics


2023JI15      Chin.Phys.C 47, 104108 (2023)

Ch.Jindal, N.Sharma, M.K.Sharma

Study of various ground state decay mechanisms of Actinide nuclei

RADIOACTIVITY 236Pu(α), (28Mg), 212,219,222Ac, 213,220,222Th, 221,224,225Pa, 223,224,225Pa, 223,224,225U, 225,227,230Np, 228,230,232,234,235,239Pu, 232,237Am, 240,242,243,244Cm, 250,252Cf, 251,253,254Es, 250,252Fm, 255,260Md, 254No(α); calculated T1/2. Comparison with available data.

doi: 10.1088/1674-1137/ace9c4
Citations: PlumX Metrics


2023KA25      Phys.Rev. C 108, 034611 (2023)

R.Kaur, B.B.Singh, M.Kaur, M.K.Sharma, P.P.Singh

Investigating 6, 7Li-induced reactions on 235, 238U through a collective clusterization approach

doi: 10.1103/PhysRevC.108.034611
Citations: PlumX Metrics


2023KU05      Acta Phys.Pol. B54, 1-A1 (2023)

V.Kumar, A.Shukla, M.K.Sharma, P.K.Rath

Characteristics of Chiral Bandhead

NUCLEAR STRUCTURE 80Br, 100Tc, 104Rh, 128Cs, 132La, 134Pr, 136,138Pm; analyzed available data; deduced the low value of reduced hindrance factors could be indicative of triaxial shape and orthogonally coupling of the valence nucleon angular momentum at the chiral bandhead.

doi: 10.5506/aphyspolb.54.1-a1
Citations: PlumX Metrics


2023KU20      Acta Phys.Pol. B54, 9-A3 (2023)

V.Kumar, A.Shukla, M.K.Sharma, P.K.Rath

Comparison of Valence-correlation Schemes in Nuclei Having Valence Nucleons in the Same Shell

NUCLEAR STRUCTURE A=6-136; analyzed available data; deduced variation of excitation energies of yrast 2+ states and ratios E4+/E2+ with NpNn.

doi: 10.5506/APhysPolB.54.9-A3
Citations: PlumX Metrics


2023RA15      Nucl.Phys. A1038, 122723 (2023)

Rajni, A.Kaushik, M.K.Sharma, A.K.Rai

Effect of double spin-orbit parameters of spin-orbit strength in reactions involving spherical-prolate, spherical-oblate, oblate-prolate and oblate-oblate configurations

NUCLEAR REACTIONS 170Er(30Si, X), 154Sm, 182,184W(32S, X), 168Er, 186W(43S, X), 180Hf(40Ar, X), 134Ba(16O, X), 126Te(32S, X), 176Yb, 154Sm, 164Er, 198Pt(28Si, X), E not given; analyzed available data; deduced different configurations along with value of deformation parameters, mass asymmetry, the presence of double spin-orbit strength imparts significant influence on spin-dependent potential using semi-classical Skyrme energy density formalism by employing SkIx (x=2, 3, 4) and SAMi Skyrme forces.

doi: 10.1016/j.nuclphysa.2023.122723
Citations: PlumX Metrics


2023SH10      Eur.Phys.J. A 59, 71 (2023)

H.Sharma, S.Jain, Amritpal, R.Kumar, M.K.Sharma

Fusion dynamics of spherical and deformed projectiles with hexadecapole deformed target nuclei

NUCLEAR STRUCTURE 147,148,149,150Sm, 152,154Sm, 172,174,176,178,180,182Yb, 40Sc, 43Sc, 55Sc, 77Sc, 82Sc, 70Ge, 72,73,74Ge, 16O, 48Ca, 48Ar, 62Fe; analyzed available data; deduced quadrupole and hexadecapole deformation of target nuclei impact on fusion dynamics.

doi: 10.1140/epja/s10050-023-00981-1
Citations: PlumX Metrics


2023SH17      Can.J.Phys. 101, 317 (2023)

M.Sharma, S.Rafi, W.Haider

Study of 6, 8He+p elastic scattering using the BHF formalism with three-body forces

NUCLEAR REACTIONS 1H(6He, 6He), E=25.6, 38.6, 40.9, 71 MeV/nucleon; 1H(8He, 8He), E=15.6, 25.6, 32.5, 66, 72 MeV/nucleon; analyzed available data using the microscopic local optical potential calculated within the framework of the Brueckner-Hartree-Fock (BHF) formalism; deduced optical potential parameters, σ(θ), analyzing power, volume integrals, the effect of the Urbana model of TBF (UVIX) along with AV18 in BHF.

doi: 10.1139/cjp-2022-0271
Citations: PlumX Metrics


2023SH25      Phys.Rev. C 108, 044613 (2023)

H.Sharma, S.Jain, R.Kumar, M.K.Sharma

Optimum orientation of compact and elongated hexadecapole deformed actinide targets: Application to synthesizing superheavy nuclei

doi: 10.1103/PhysRevC.108.044613
Citations: PlumX Metrics


2023SI05      Acta Phys.Pol. B54, 1-A4 (2023)

Y.P.Singh, V.Kumar, A.Choudhary, A.Shukla, M.K.Sharma, P.K.Rath, Rohtash, P.Jain, Y.Kumar, R.Sapra, K.Jha, M.Silarski, S.Sharma

Influence of Collectivity on Reduced Hindrance Factor of K-isomers in Tantalum and Hafnium Isotopes

NUCLEAR STRUCTURE 170,172,174,176,178,180,182,184Hf, 173,175,177,179,181,183,185Ta; analyzed available data; deduced correlations of the reduced hindrance factor of the K-isomers in Ta and Hf isotopes with respect to NpNn.

doi: 10.5506/aphyspolb.54.1-a1
Citations: PlumX Metrics


2023YA11      Phys.Rev. C 107, 044605 (2023)

A.Yadav, G.Ram, M.S.Asnain, I.Majeed, M.Shuaib, V.R.Sharma, I.Bala, U.Gupta, S.Gupta, D.P.Singh, P.P.Singh, M.Sharma, R.Kumar, B.P.Singh, R.Prasad

Understanding the low-energy incomplete fusion reactions

NUCLEAR REACTIONS 159Tb(18O, 3n), (18O, 4n), (18O, 5n), (18O, 6n), (18O, 2nα), (18O, 5nα), (18O, 6nα), (18O, 5npα), E=82, 95, 97, 100 MeV; measured Eγ, Iγ; deduced σ(E), contributions of complete and incomplete fusion channels. Comparison to predictions done using the PACE4 code. Systematics of incomplete fusion with different projectiles - 12C, 13C, 14N, 16O, 18O, 19F, 20Ne. Activation technique experiment at the Inter-University Accelerator Centre (IUAC, New Delhi).

doi: 10.1103/PhysRevC.107.044605
Citations: PlumX Metrics


2022AS01      Phys.Rev. C 105, 014609 (2022)

M.S.Asnain, M.Shuaib, I.Majeed, M.K.Sharma, V.R.Sharma, A.Yadav, D.P.Singh, P.P.Singh, S.Kumar, R.Kumar, B.P.Singh, R.Prasad

Systematic study of fusion suppression for tightly bound projectiles at above-barrier energies

NUCLEAR REACTIONS 181Ta(14N, X), E=83.05, 85.17, 87.07 MeV; measured Eγ, Iγ, total complete fusion σ(E) by activation method, and off-line γ-ray spectroscopy at the Pelletron ion-beam facility of IUAC-New Delhi. Comparison with theoretical fusion cross section calculated by using the code CCFULL. 159Tb, 169Tm(12C, X), (13C, X), (16O, X), (19F, X), 175Lu(19F, X), 181Ta(14N, X), E(cm)=50-100 MeV; analyzed previous and present experimental data, and compared fusion σ(E) in different systems with strongly bound projectiles using universal fusion function (UFF) method; deduced suppression factors for various projectiles, breakup effects of strongly bound non-α-cluster projectile 14N on fusion cross section at energies above the Coulomb barrier.

doi: 10.1103/PhysRevC.105.014609
Citations: PlumX Metrics


2022AS02      Phys.Rev. C 106, 064607 (2022)

M.S.Asnain, Mohd.Shuaib, I.Majeed, M.K.Sharma, A.Yadav, D.P.Singh, P.P.Singh, R.Kumar, B.P.Singh, R.Prasad

Decomposing the linear momentum transfer components in break-up fusion reactions: An experimental study of the 19F + 159Tb system

NUCLEAR REACTIONS 159Tb(19F, X), (19F, 4n), (19F, 5n), (19F, 4np), (19F, 3nα), (19F, 4nα), (19F, 3npα), (19F, 3n2α), (19F, 2np2α), (19F, 4np2α), E=82.8, 94.3 MeV; measured reaction products, Eγ, Iγ; deduced total ranges of the residues in Al, complete fusion σ(E), fusion function, forward recoil range integrated σ(E), contribution of complete fusion and incomplete fusion components to the production of residues. Stack of Al foils was installed after the target to catch the forward recoiled residues, which later were measured with HPGe detector. Comparison with PACE4 calculation, coupled channels calculations performed with CCFULL and other experimental data. Beam from 15UD Pelletron accelerator facility at Inter University Accelerator Center (IUAC, India).

doi: 10.1103/PhysRevC.106.064607
Citations: PlumX Metrics


2022CH03      Phys.Rev. C 105, 014610 (2022)

S.Chopra, M.K.Sharma, P.O.Hess, J.Bedi

Possibility to form Z=120 via the 64Ni + 238U reaction using the dynamical cluster-decay model

NUCLEAR REACTIONS 238U(64Ni, X)302120*, E(cm)=260-300 MeV; calculated mass fragmentation potential, evaporation residues (ERs) σ(E), fission and quasifission σ(E), preformation probability as a function of fragment mass number. 248Cm(54Cr, X)302120*, E*=39.7 MeV; calculated preformation probability as a function of fragment mass number. Dynamical cluster-decay model (DCM). Comparison with available experimental data.

doi: 10.1103/PhysRevC.105.014610
Citations: PlumX Metrics


2022CH43      Phys.Rev. C 106, L031601 (2022)

S.Chopra, N.Goel, M.K.Sharma, P.O.Hess, Hemdeep

Theoretical attempt to predict the cross sections in the case of new superheavy elements

NUCLEAR REACTIONS 248Cm(54Cr, X), (54Cr, n), (54Cr, 2n), (54Cr, 3n), (54Cr, 4n), 245Cm(48Ca, X), (48Ca, n), (48Ca, 2n), (48Ca, 3n), (48Ca, 4n), 249Cf(48Ca, X), (48Ca, n), (48Ca, 2n), (48Ca, 3n), (48Ca, 4n), E(cm)=33, 193.561 MeV; calculated σ, survival probability for 297Og, 293Lv compound nucleus. Dynamical cluster-decay model (DCM) calculations. Comparison to available experimental data.

doi: 10.1103/PhysRevC.106.L031601
Citations: PlumX Metrics


2022JA03      Chin.Phys.C 46, 014102 (2022)

S.Jain, M.K.Sharma, R.Kumar

Fusion of spherical-octupole pairs of colliding nuclei for compact and elongated configurations

NUCLEAR REACTIONS 144Ba, 280Ra(16O, X), 145,146,148Nd, 149,150Sm(16O, X), (48Ca, X), E not given; analyzed available data; calculated fusion σ using the Wong formula, transmission probability.

doi: 10.1088/1674-1137/ac2ed2
Citations: PlumX Metrics


2022JA07      Phys.Rev. C 105, 034605 (2022)

S.Jain, R.Kumar, S.K.Patra, M.K.Sharma

Investigation of octupole deformed fragments decaying from even-even isotopes of 222-230Th

NUCLEAR REACTIONS 208Pb(16O, X)224Th*, E*=22.65-25.29 MeV; 208Pb(14O, X)222Th*, (18O, X)226Th*, (20O, X)228Th*, (22O, X)230Th*, E*=24.37 MeV; calculated fragmentation potentials and preformation probabilities as functions of mass and charge distributions, fission σ(E) using dynamical cluster-decay model (DCM), with collective clusterization approach of quantum mechanical fragmentation theory, including quadrupole (β2) and octupole (β3) deformations of fission fragments. Comparison with available experimental data.

doi: 10.1103/PhysRevC.105.034605
Citations: PlumX Metrics


2022KA15      Eur.Phys.J. A 58, 59 (2022)

A.Kaur, K.Sandhu, G.Sawhney, M.K.Sharma

Light charged particle emission from Pb isotopes formed in n-induced channel and related structural analysis

NUCLEAR STRUCTURE 207,208Pb, 113Sn; analyzed available data; deduced the charge particle emission formed in highly asymmetric n-induced channel. The Dynamical Cluster-decay Model (DCM).

doi: 10.1140/epja/s10050-022-00686-x
Citations: PlumX Metrics


2022KA26      Nucl.Phys. A1027, 122491 (2022)

S.Kaur, M.K.Sharma, R.Kumar

Systematic study of probable target-projectile combinations for the synthesis of Z = 120 isotopes using the Skyrme energy density formalism

NUCLEAR REACTIONS 252Cf(48Ti, X), 250Cf(50Ti, X), 250Cm(50Cr, X), 248Cm(52Cr, X), 226Rn(74Ge, X), 168Re(132Te, X), 164Dy(136Xe, X), 240Pu(60Fe, X), 242Pu(58Fe, X), 236U(64Ni, X), 238U(62Ni, X), 232Th(68Zn, X), 230Th(70Zn, X), 228Rn(72Ge, X)300120, 238U(64Ni, X), 244Pu(58Fe, X), 254Fm(48Ca, X), 248Cm(54Cr, X), 252Cf(50Ti, X), 236U(66Ni, X), 232Th(70Zn, X), 226Rn(76Ge, X), 242Pu(60Fe, X), 274Hs(28Mg, X), 228Th(74Zn, X), 174Yb(128Sn, X), 170Er(132Te, X), 166Dy(136Xe, X)302120, 250Cm(54Cr, X), 244Pu(60Fe, X), 228Rn(76Ge, X), 232Th(72Zn, X), 256Fm(48Ca, X), 250Cf(54Ti, X), 230Th(74Zn, X)304120, E not given; analyzed available data; deduced target-projectile combinations are taken in reference to the minima's of the fragmentation potential calculated using the Quantum Mechanical Fragmentation Theory (QMFT), nuclear interaction potential within the Skyrme energy density formalism (SEDF) using the GSkI force parameters.

doi: 10.1016/j.nuclphysa.2022.122491
Citations: PlumX Metrics


2022KA32      Phys.Rev. C 106, 034615 (2022)

J.Kaur, A.Kaur, M.Singh Gautam, M.K.Sharma

Analysis of formation and decay of 122, 128Ba* formed via 58, 64Ni + 64Ni reactions near the Coulomb barrier

NUCLEAR REACTIONS 64Ni(64Ni, X)128Ba, E(cm)=85-120 MeV; 64Ni(58Ni, X)122Ba, E(cm)=85-115 MeV; calculated fusion σ(E), radial dependence of the fusion barrier, fragmentation potential, evaporation residual σ(E) and preformation probability for the decay of the daughter nuclei 122Ba and 128Ba.Fusion processes calculated with energy-dependent Woods-Saxon potential (EDWSP) model. Decay dynamics studied via dynamical cluster-decay model (DCM). Comparison to the available experimental data.

doi: 10.1103/PhysRevC.106.034615
Citations: PlumX Metrics


2022MA13      Nucl.Phys. A1021, 122421 (2022)

I.Majeed Bhat, Mohd.S.M.S.Asnain, V.R.Sharma, A.Yadav, M.K.Sharma, P.P.Singh, D.P.Singh, U.Gupta, R.N.Sahoo, A.Sood, M.Kaushik, R.Kumar, B.P.Singh, R.Prasad

Effect of projectile structure on break-up fusion for 14N + 175Lu system at intermediate energies

NUCLEAR REACTIONS 175Lu(14N, X)184Pt/185Pt/186Pt/183Ir/184Ir/185Ir/182Os/183Os/181Re/177W/178Ta, E=87.11 MeV; measured reaction products, Eγ, Iγ; deduced σ. Comparison with PACE4 predictions. The Inter University Accelerator, New Delhi, India.

doi: 10.1016/j.nuclphysa.2022.122421
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6422.


2022MA25      Phys.Rev. C 105, 054607 (2022)

I.Majeed Bhat, M.Shuaib, M.S.Asnain, M.K.Sharma, A.Yadav, V.R.Sharma, P.P.Singh, D.P.Singh, S.Gupta, U.Gupta, R.N.Sahoo, A.Sood, M.Kaushik, S.Kumar, R.Kumar, B.P.Singh, R.Prasad

Role of precursor nuclei in heavy-ion induced reactions at low energies

NUCLEAR REACTIONS 175Lu(14N, 4np), E=79.68, 87.11 MeV; 159Tb(12C, 3np), E=69.15, 77.77 MeV; 159Tb(13C, 4np), E=77.87, 84.59 MeV; measured Eγ, Iγ; deduced σ(E). Separated yields of the isotope produced in the direct reaction from feeding caused by decay of the isotopes from other channels. Pelletron accelerator facility of the Inter-University Accelerator Centre(IUAC), New Delhi. comparison to theoretical estimations.

RADIOACTIVITY 184Pt(β+), (EC) [from 175Lu(14N, 5n), E=79.68, 87.11 MeV]; 167Lu(EC) [from 159Tb(13C, 5n), E=77.87, 84.59 MeV; 159Tb(12C, 4n), E=69.15, 77.77 MeV]; measured Eγ, Iγ; deduced T1/2. Comparison to other experimental data.

doi: 10.1103/PhysRevC.105.054607
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6434. Data from this article have been entered in the XUNDL database. For more information, click here.


2022PA08      Phys.Rev. C 105, 024316 (2022)

V.Parmar, M.K.Sharma, S.K.Patra

Properties of hot finite nuclei and associated correlations with infinite nuclear matter

NUCLEAR STRUCTURE 56Fe, 90Zn, 208Pb, 236U; calculated level density parameters, excitation energy as function of temperature. 236U; calculated fissility parameter, liquid-drop fission barrier. 208Pb; calculated limiting temperature, chemical potential, radius, lifetime of nuclear liquid drop, liqiud density, gas density, pressure. A=50-250; calculated limiting temperature, limiting excitation energy per nucleon, lifetime of nuclear liquid drop. Effective relativistic mean-field theory (E-RMF). Comparison to experimental data.

doi: 10.1103/PhysRevC.105.024316
Citations: PlumX Metrics


2022RA07      Phys.Rev. C 105, 044616 (2022)

Rajni, K.Sandhu, M.K.Sharma

Fragmentation analysis of Z = 112-116 nuclei using a Skyrme energy density formalism within the collective clusterization approach

NUCLEAR REACTIONS 238U(48Ca, X)286Cn*, E(cm)=195.04, 199.04 MeV; 244Pu(48Ca, X)292Fl*, E(cm)=196.50, 201.50 MeV; 248Cm(48Ca, X)296Lv*, E(cm)=199.47, 206.40 MeV; calculated fusion-fission σ(E), symmetric and asymmetric quasifission σ(E), 3n- and 4n-evaporation σ(E), fragmentation potential, fission fragments mass yields, penetration probability as a function of fission mass fragments, average total kinetic energy distribution TKE as a function of fragment mass Skyrme energy density formalism (SEDF) within the dynamical cluster decay model using two different Skyrme forces - GSkI and SSk. Comparison to available experimental data.

doi: 10.1103/PhysRevC.105.044616
Citations: PlumX Metrics


2022RA25      Phys.Rev. C 106, 044605 (2022)

Rajni, G.Sawhney, M.K.Sharma

Role of Skyrme forces in cluster radioactivity of parent nuclei with even (A, Z)

RADIOACTIVITY 222,224,226Ra, 226Th(14C), (α);226Th(18O);228Th(+20(O)), (α);230Th, 232U(24Ne), (α);230U(22Ne);234U(26Ne), (α);236Pu(28Mg), (α);238Pu(30Mg), (α); calculated cluster preformation probability, T1/2, Q-value, penetrability for decaying channel, scattering and fragmentation potential. Calculations within the framework of the preformed cluster model (PCM) with Skyrme forces (SIII, SkI4, and SAMi). Comparison with available experimental data.

doi: 10.1103/PhysRevC.106.044605
Citations: PlumX Metrics


2022SA43      Int.J.Mod.Phys. E31, 2250094 (2022)

G.Sarkar, A.Kaur, M.Maiti, M.K.Sharma

A theoretical study on the impact of centrifugal potential and fragment identification in the decay of compound nuclei (ACN = 60 and 100)

NUCLEAR REACTIONS 48Ca(48Ca, X)96Zr, E(cm)=59.55 MeV; 64Ni(34S, X)98Ru, E(cm)=62.84 MeV; 26Mg(34S, X)60Ni, E(cm)=33.50 MeV; 27Al(35Cl, X)62Zn, E(cm)=71.60 MeV; analyzed available data; deduced variation of fragmentation potential as a function of fragment mass number using two theoretical frameworks, dynamical cluster-decay model (DCM) and PACE4.

doi: 10.1142/S021830132250094X
Citations: PlumX Metrics


2022SH14      Phys.Rev. C 105, 044602 (2022)

N.Sharma, A.Kaur, M.K.Sharma

Ternary fission analysis of 242, 258Fm nuclei using equatorial and collinear cluster tripartition configurations

RADIOACTIVITY 242,258Fm(SF); calculated ternary fragmentation potentials, penetrability parameters for ternary fission, preferred ternary fission fragment combinations for equatorial cluster tripartition (ECT) and collinear cluster tripartition (CCT) configurations for binary fragment combinations of the following nuclides: 52Ti, 56Cr, 60,61,64,66,67,68Fe, 67Co, 66,67,68,80,72Ni, 73Cu, 76,78,80,82Zn, 79,81Ga, 82,83,86Ge, 83As, 80,81,82,84,85,86,87,88Se, 89Br, 82,83,84,85,86,88,90,92,93,94,95,96Kr, 87Rb, 88,90,91,94,96,97,98,99Sr, 90,99,101Y, 93,95,96,100,101,102,103,104,105,106Zr, 97,107Nb, 98,99,100,101,102,106,107,108,109,110Mo, 103,104Tc, 105,106,107,108,112,113Ru, 109Rh, 110,111,112,116,118Pd, 113,119Ag, 114,115,122,124,126,127,132Cd, 117,119,122,124,126In, 118,119,120,121,122,123,124,132Sn, 123,127,133Sb, 124,127,128,129,132,134Te, 129,131I, 132,133Xe, 137Cs, 136,137,138,141Ba, 139La, 140,141Ce, and with the third low-mass tertiary fragments of n, 2,3H, 4,5,6He, 7Li, 8,9,10,11,12Be, 13,14,15,16C, 17N, 18,19,20,21,22O, 23F, 24,25,26Ne, 27Na, 28,29,30,31,32Mg, 33,34,35,36Sc, 37P, 38,39,40,41,42S, 43Cl, 44,45,46Ar, 47K, 48,49,50,51,52Ca, 53Sc, 54,55,56,57,58Ti, 59V, 60,61,62Cr, 63Mn, 64,65,66,67,68Fe, 69Co, 70,71,72,73,74Ni, 75Cu, 76,77,78,79Zn, 80,81,82,83,84Ge, 85,86Se. Quantum mechanical fragmentation theory based on three cluster model.

doi: 10.1103/PhysRevC.105.044602
Citations: PlumX Metrics


2022SH37      Phys.Rev. C 106, 034608 (2022)

N.Sharma, M.K.Sharma

α decay of Po and Rn isotopes using different choices of impinging frequency

RADIOACTIVITY 188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Po, 198,200,202,204,206,208,210,212,214,216,218,220Rn(α); calculated preformation probabilities, penetrabilities, Q(α) and T1/2 values, quantum and classical assault frequencies as function of neutron number. 188,202,218Po; calculated fragmentation potential as a function of fragment mass. Preformed cluster model (PCM). Comparison with available experimental values, and with other theoretical models: SAM, GLDM, CPPM, ADF, UDL, SLH, SLB, and SemFIS.

doi: 10.1103/PhysRevC.106.034608
Citations: PlumX Metrics


2022VI08      Phys.Rev. C 106, 064609 (2022)

Vijay, N.Grover, K.Sharma, M.Singh Gautam, M.K.Sharma, R.Pal Chahal

Fusion-fission analysis of 12C + 248Cm and 16O + 244Pu and 16O + 244Pu nuclear reactions across the Coulomb barrier

NUCLEAR REACTIONS 248Cm(12C, X)260No, E(cm)=50-90 MeV; 244Pu(16O, X)260No, E=65-115 MeV; calculated total fusion σ(E), full momentum transfer (complete fusion) σ(E), noncompound nucleus (nCN) fission σ(E), Coulomb and nuclear potentials, fragmentation potentials of light particles and fission fragment in the decay of formed 260No, fragments preformation probabilities. Calculations using symmetric-asymmetric Gaussian barrier distribution (SAGBD) model and Wong formula. Comparison to available experimental data.

RADIOACTIVITY 260,262No(SF); calculated fission fragment pairs preformation distribution. dynamical cluster-decay model (DCM).

doi: 10.1103/PhysRevC.106.064609
Citations: PlumX Metrics


2021AS08      Phys.Rev. C 104, 034616 (2021)

M.S.Asnain, M.Shuaib, I.Majeed, M.K.Sharma, V.R.Sharma, A.Yadav, D.P.Singh, P.P.Singh, U.Gupta, R.N.Sahoo, A.Sood, M.Kaushik, S.Kumar, R.Kumar, B.P.Singh, R.Prasad

Effect of non-α-cluster projectile on incomplete-fusion dynamics: Experimental study of the 14N + 181Ta

NUCLEAR REACTIONS 181Ta(14N, 3n)192Hg, (14N, 4n)191Hg/191mHg, (14N, 5n)190Hg, (14N, 6n)189Hg/189mHg, (14N, 3np)191Au, (14N, 4np)190Au, (14N, 5np)189Au/189mAu, (14N, 2nα)189Pt, (14N, 4nα)187Pt, (14N, 5nα)186Pt, (14N, 3npα)187Ir, (14N, 4npα)186Ir/186mIr, (14N, 5npα)185Ir, (14N, 4n2α)183Os, (14N, 5np2α)181Re, E=65.53, 67.50, 69.47, 71.54, 73.65, 75.65, 77.08, 79.51, 81.42, 83.05, 85.17, 87.07 MeV; measured off-line Eγ, Iγ, σ(E) for radio-nuclides populated via complete fusion (CF) and/or incomplete fusion (ICF processes) by activation method at the ion-beam facility of the IUAC-New Delhi; deduced total fusion, total complete fusion, and total incomplete fusion σ(E). Comparison with statistical model calculations using PACE4 code. 190Hg; measured nominal half-life from γ-decay curves as an example for the purpose of correct identification of different radioactive nuclei produced through various reaction channels.

doi: 10.1103/PhysRevC.104.034616
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6406.


2021CH28      Phys.Rev. C 103, 064615 (2021)

S.Chopra, M.K.Sharma, P.O.Hess, Hemdeep, NeetuMaan

Impact of noncoplanar degrees of freedom on quasifission contributions with the estimation of unobserved decay channels for the study of 196Pt* using the dynamical cluster-decay model

NUCLEAR REACTIONS 132Sn(64Ni, X)196Pt*, E(cm)=165.5, 167.2, 171, 175.2, 183.7, 195.2 MeV; calculated l-dependent scattering potential for 195Pt+1n in the decay of 196Pt* for 167.2 MeV, evaporation residues (ERs) and fusion-fission cross sections, mass fragmentation potential and preformation probability at 195.2 MeV using dynamical cluster-decay model (DCM). Comparison with available experimental data.

doi: 10.1103/PhysRevC.103.064615
Citations: PlumX Metrics


2021GR02      Nucl.Phys. A1011, 122198 (2021)

N.Grover, V.Parmar, S.K.Patra, M.K.Sharma

Decay dynamics of 9Be + 89Y reaction in view of complete and incomplete fusion mechanisms

NUCLEAR REACTIONS 89Y(9Be, X)98Tc/5He/4He/1NN, E=32.6 MeV; calculated fragmentation potential as a function of fragment mass, preformation probability, neck length parameter, evaporation residue σ using optimum orientations approach of dynamical cluster decay model (DCM).

doi: 10.1016/j.nuclphysa.2021.122198
Citations: PlumX Metrics


2021KA09      Int.J.Mod.Phys. E30, 2150001 (2021)

N.Kaur Virk, R.Kumar, M.K.Sharma

Impact of different hydrodynamical mass transfer approaches in the spontaneous fission of Cf isotopes

RADIOACTIVITY 237,238,240,242,246,248,249,250,252,254Cf(SF); calculated preformation probability, T1/2 for a particular decay channel within the framework of preformed cluster decay model (PCM). Comparison with available data.

doi: 10.1142/S0218301321500014
Citations: PlumX Metrics


2021KA17      Phys.Rev. C 103, 034618 (2021)

A.Kaur, N.Sharma, M.K.Sharma

Effect of compact and elongated configurations on the spontaneous and induced fission of Fm isotopes

RADIOACTIVITY 242,244,246,248,250,252,254,256,258,260Fm(SF); calculated scattering or interaction and collective fragmentation potentials, preformation yields as function of fragment mass for spherical, quadrupole β2-deformed hot compact and β2-deformed cold-elongated fragments, SF half-lives, proton and neutron numbers of preferred light fission fragments, preformation probabilities, penetrabilities. Preformed cluster model (PCM) based on quantum mechanical fragmentation theory, and dynamical cluster-decay model (DCM). Comparison with available experimental data.

doi: 10.1103/PhysRevC.103.034618
Citations: PlumX Metrics


2021MA50      Nucl.Phys. A1014, 122236 (2021)

I.Majeed Bhat, Mohd.Shuaib, M.S.Asnain, V.R.Sharma, A.Yadav, M.K.Sharma, P.P.Singh, D.P.Singh, R.Kumar, R.P.Singh, S.Muralithar, B.P.Singh, R.Prasad

Systematic study of fusion-fission like events in 19F + 175Lu interactions at low energies

NUCLEAR REACTIONS 175Lu(19F, X)120Xe/99Tc/79Rb/107In/129Ba/108In/84Rb/74Kr/90Mo/123Xe/122Xe/109In/121Xe/129La/121I/111In/81Rb/95Ru/89Rb/82Rb/98Nb, E=105, 110 MeV; measured reaction products, Eγ, Iγ; deduced γ-ray energies and relative intensities, σ, isotopic yield and isobaric charge distributions, fractional independent yields, mass distributions.

doi: 10.1016/j.nuclphysa.2021.122236
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6402.


2021PA19      Phys.Rev. C 103, 055817 (2021)

V.Parmar, M.K.Sharma, S.K.Patra

Thermal effects in hot and dilute homogeneous asymmetric nuclear matter

doi: 10.1103/PhysRevC.103.055817
Citations: PlumX Metrics


2021SA41      Nucl.Phys. A1015, 122305 (2021)

G.Sarkar, N.Grover, M.K.Sharma, M.Maiti

Decay aspects of the compound nuclei formed via CF and ICF path in 12C + 52Cr reaction

NUCLEAR REACTIONS 52Cr(12C, X)64Zn, E(cm)=41.84-71.20 MeV; analyzed available data; deduced compound system preformation probability. Complete fusion (CF) and incomplete fusion (ICF) channel.

doi: 10.1016/j.nuclphysa.2021.122305
Citations: PlumX Metrics


2021SH30      Phys.Rev. C 104, L031601 (2021)

M.Sharma, M.Sarswat, S.Arora, S.Kumar, M.Shuaib, I.Majeed, M.S.Asnain, B.P.Singh, R.Prasad, V.R.Sharma, A.Yadav, P.P.Singh, D.P.Singh

New experimental approach for developing a mass-energy systematics for precompound emission

NUCLEAR REACTIONS 63,65Cu(α, n), E=5-50 MeV; analyzed experimental σ(E) with theoretical calculations using Monte Carlo statistical code PACE4. 63,65Cu, 69,71Ga, 85Rb, 89Y, 93Nb, 103Rh, 107,109Ag(α, n), E(cm)=22-40 MeV; calculated fraction of pre-compound emission as functions of center-of-mass energy, excitation energy and excess energy; deduced mass-energy systematics in pre-compound emission reactions.

doi: 10.1103/PhysRevC.104.L031601
Citations: PlumX Metrics


2021SH44      Bull.Rus.Acad.Sci.Phys. 85, 1486 (2021)

N.Sharma, A.Kaur, M.K.Sharma

Decay Dynamics of 221Ac* Nucleus Formed in 16O- and 12C-Induced Reactions at Above Barrier Energies

NUCLEAR REACTIONS 205Tl(16O, X)221Ac, 209Bi(12C, X)221Ac, E not given; analyzed available data; deduced evaporation residue and fusion-fission σ, fission fragment mass distributions. Dynamical cluster decay model (DCM).

doi: 10.3103/S1062873821120303
Citations: PlumX Metrics


2021SO23      J.Phys.(London) G48, 025105 (2021)

A.Sood, S.Thakur, A.Sharma, V.R.Sharma, A.Yadav, M.K.Sharma, B.P.Singh, R.Kumar, R.K.Bhowmik, P.P.Singh

Disentangling complete and incomplete fusion events in 12C + 169Tm reaction by spin-distribution measurements

NUCLEAR REACTIONS 169Tm(12C, X), E=6.7, 7.5 MeV/nucleon; measured reaction products, Eα, Iα, Eγ, Iγ. 176Re, 174Ta, 171Lu; deduced yields, strong entrance-channel dependence of incomplete fusion dynamics.

doi: 10.1088/1361-6471/abc14a
Citations: PlumX Metrics


2020JA04      Nucl.Phys. A997, 121699 (2020)

S.Jain, M.K.Sharma, R.Kumar

Analysis of the barrier characteristics and related fusion properties using 2pF, 3pF and 3pG density functions

doi: 10.1016/j.nuclphysa.2020.121699
Citations: PlumX Metrics


2020JA07      Phys.Rev. C 101, 051601 (2020)

S.Jain, M.K.Sharma, R.Kumar

Optimum orientations for octupole deformed nuclei in fusion configurations

NUCLEAR REACTIONS 110,111,148La, 224,226,232,274,276,280Rn, 276,278,280Ac(48Ca, X), E(cm)=182.06-226.06 MeV; calculated fusion barrier, interaction radii of oriented octupole deformed target nuclei as function of soft or rigid-pear shaped deformation of colliding partners, and fusion σ(E) of 142La, 220Rn(48Ca, X)190Ir*/268Sg* systems using Wong formula; deduced optimum orientations of participating nuclei as function of positive and negative signs of octupole deformation parameter β3. Relevance to synthesis and subsequent decays of heavy and superheavy nuclei.

doi: 10.1103/PhysRevC.101.051601
Citations: PlumX Metrics


2020KA17      Eur.Phys.J. A 56, 35 (2020)

N.Kaur Virk, R.Kumar, M.K.Sharma

Cluster radioactivity within the collective fragmentation approach using different mass tables and related deformations

doi: 10.1140/epja/s10050-020-00023-0
Citations: PlumX Metrics


2020SA32      Phys.Rev. C 102, 024615 (2020)

R.N.Sahoo, M.Kaushik, A.Sood, A.Sharma, S.Thakur, Pa.Kumar, M.M.Shaikh, R.Biswas, A.Yadav, M.K.Sharma, J.Gehlot, S.Nath, N.Madhavan, R.G.Pillay, E.M.Kozulin, G.N.Knyazheva, K.V.Novikov, P.P.Singh

Role of neutron transfer in sub-barrier fusion

NUCLEAR REACTIONS 130Te(35Cl, X), E(cm)=94.0, 95.6, 97.2, 98.8, 100.3, 101.9, 103.5, 105.0 MeV; measured evaporation residues (ERs), ΔE-time spectra, fusion σ(E) using recoil mass separator HIRA at IUAC-New Delhi accelerator facility. Comparison with experimental fusion σ(E) data for 130Te(37Cl, X), and other systems. Coupled-channels analysis using CCFULL code.

doi: 10.1103/PhysRevC.102.024615
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6389.


2020SH04      Nucl.Phys. A994, 121666 (2020)

I.Sharma, M.K.Sharma

Relevance of Skyrme forces in the decay dynamics of 28Si* at stellar energies

doi: 10.1016/j.nuclphysa.2019.121666
Citations: PlumX Metrics


2020SH29      Eur.Phys.J. A 56, 247 (2020)

M.K.Sharma, M.Kumar, M.Shuaib, I.Majeed, M.S.Asnain, V.R.Sharma, A.Yadav, P.P.Singh, D.P.Singh, B.P.Singh, R.Prasad

A systematic experimental study of pre-compound emission in α-particle induced reactions on odd mass nuclei A = 103-123

NUCLEAR REACTIONS 103Rh, 107,109Ag, 113,115In, 121,123Sb(α, n), E not given; analyzed available data; deduced systematics on the pre-compound emission process using EXFOR library data.

doi: 10.1140/epja/s10050-020-00238-1
Citations: PlumX Metrics


2020SH32      Phys.Rev. C 102, 064603 (2020)

N.Sharma, A.Kaur, M.K.Sharma

Analysis of various competing binary and ternary decay processes of the 253Es nucleus

RADIOACTIVITY 253Es(α), (46Ar), (82Ge), (SF); calculated preformation probability, penetrability, half-lives, binary and ternary fragmentation potentials, relative mass yields for binary and ternary fission processes using preformed cluster model (PCM) and three-cluster model (TCM). Comparison with available experimental data.

doi: 10.1103/PhysRevC.102.064603
Citations: PlumX Metrics


2020SH33      Ann.Nucl.Energy 84, 1557 (2020)

K.Sharma, M.K.Sharma

Relevance of Deformation Effects in Decay Modes of Radioactive Nucleus 242Cm

RADIOACTIVITY 242Cm(SF), (α); calculated mass fragmentation potentials, fragment preformation probability, barrier heights, T1/2, deformation parameters using the Preformed Cluster Approach.

doi: 10.3103/S1062873820120345
Citations: PlumX Metrics


2020SO05      Acta Phys.Pol. B51, 775 (2020)

A.Sood, P.Kumar, R.N.Sahoo, P.P.Singh, A.Yadav, V.R.Sharma, M.K.Sharma, R.Kumar, R.P.Singh, S.Muralithar, B.P.Singh, R.K.Bhowmik

Evidence of Narrow Range High Spin Population in Incomplete Fusion

doi: 10.5506/APhysPolB.51.775
Citations: PlumX Metrics


2019KA02      Nucl.Phys. A981, 89 (2019)

N.Kaur Virk, M.K.Sharma, R.Kumar

Role of shell and pairing correction in the dynamics of compound nuclei with ACN=18-196 using collective clusterization approach

NUCLEAR REACTIONS 90Zr(28Si, x)118Xe;96Mo(32S, x)128Ce, 110Pd(36S, x)146Sm;48Ca(124Sn, x)172Yb;64Ni(132Sn, x), 196Pt, E(cm)=65.7-195.2 MeV; calculated ER (Evaporation residues) σ, fragment mass distribution, mass excess, shell correction energies, cluster (fragment) preformation probability vs fragment mass, maximal orbital momentum using DCM (Dynamical Cluster Model) based on QMFT (Quantum-Mechanical Fragmentation Theory) with and without shell corrections. Compared with data.

doi: 10.1016/j.nuclphysa.2018.10.059
Citations: PlumX Metrics


2019KA18      Phys.Rev. C 99, 044611 (2019)

A.Kaur, M.K.Sharma

Investigation of various decay mechanisms for 216Th* following the 32S + 184W reaction in the range Ec.m. 118-196 MeV

NUCLEAR REACTIONS 184W(32S, X)216Th*, E(cm)=118.8-195.9 MeV; calculated mass fragmentation potential, preformation probability, fission anisotropies, σ(E) from fusion-fission, quasifission, fast fission, and evaporation residue channels, scattering potential, quasifission and Coulomb barriers, compound nucleus fusion probability, and l-summed preformation probability. Collective clusterization approach of the dynamical cluster-decay model (DCM) with effects of angular momentum and β2 deformation. Comparison with experimental results.

doi: 10.1103/PhysRevC.99.044611
Citations: PlumX Metrics


2019KA26      Eur.Phys.J. A 55, 89 (2019)

A.Kaur, M.K.Sharma

Fine structure effect among heavy-ion induced fission fragments at near and above barrier energies

NUCLEAR REACTIONS 182W, 193Ir, 209Bi(19F, f), E(cm)≈80 MeV; calculated fission decay of excited 201Bi, 206Po, 212Rn, 216Ra, 227Pa, 238U using Dynamical Cluster-decay Model (DCM) preformation yield vs fragment mass, symmetric to asymmetric fission ratio vs compound nucleus mass.

doi: 10.1140/epja/i2019-12769-3
Citations: PlumX Metrics


2019KA40      Nucl.Phys. A990, 79 (2019)

G.Kaur, M.K.Sharma

Fission mass distribution of various superheavy nuclei and related dynamical analysis

doi: 10.1016/j.nuclphysa.2019.06.011
Citations: PlumX Metrics


2019KA41      Nucl.Phys. A990, 94 (2019)

A.Kaur, G.Kaur, S.K.Patra, M.K.Sharma

Across barrier fission analysis of At* isotopes formed in 3, 4, 6, 8He+209Bi reactions

doi: 10.1016/j.nuclphysa.2019.07.001
Citations: PlumX Metrics


2019KA55      Int.J.Mod.Phys. E28, 1950105 (2019)

P.Kaushal, M.K.Sharma

Systematic decay analysis of 202Po* compound nucleus using Dynamical Cluster-decay Model

NUCLEAR REACTIONS 154Gd(48Ca, X)202Po, E not given; analyzed available data for 202Po compound nucleus; calculated decay constant, octupole and hexadecupole deformation parameters, σ using the Quantum Mechanical Fragmentation Theory (QMFT)-based Dynamical Cluster-decay Model (DCM).

doi: 10.1142/S0218301319501052
Citations: PlumX Metrics


2019RA26      Int.J.Mod.Phys. E28, 1950052 (2019)

Rajni, M.K.Sharma

Influence of nuclear surface diffuseness on systems involving spherical and deformed targets

NUCLEAR REACTIONS 14C, 52Cr, 92Zr, 128Te, 154Sm, 194Pt(12C, X), E(cm)<55 MeV; analyzed available data; deduced nuclear proximity potentials, diffuseness parameter vs. barrier characteristics, quadrupole (β2), octupole (β3) and hexadecapole (β4) deformation parameters, σ.

doi: 10.1142/S0218301319500526
Citations: PlumX Metrics


2019SA15      Nucl.Phys. A983, 145 (2019)

R.N.Sahoo, M.Kaushik, A.Sood, P.Kumar, V.R.Sharma, A.Yadav, P.P.Singh, M.K.Sharma, R.Kumar, B.P.Singh, S.Aydin, R.Prasad

Insights into the low energy incomplete fusion

NUCLEAR REACTIONS 169Tm(12C, x), E(cm)=52.98 - 89.25 MeV; measured Eγ, Iγ(t); deduced production σ of evaporation residues. 169Tm(12C, x), E=52.98 - 89.25 MeV;160Gd(12C, x), Ei(cm)=83.7 MeV;103Rh(16O, x), 159Tb(16O, x), E not given; calculated ER production σ using PACE4 and with different level density parameters and using CCFULL; deduced potential parameters, radius parameter from the fit to the data, variation of incomplete fusion fraction with neutron skin thickness and with angular momentum.

doi: 10.1016/j.nuclphysa.2018.12.013
Citations: PlumX Metrics


2019SA17      Phys.Rev. C 99, 024607 (2019)

R.N.Sahoo, M.Kaushik, A.Sood, P.Kumar, A.Sharma, S.Thakur, P.P.Singh, P.K.Raina, M.M.Shaikh, R.Biswas, A.Yadav, J.Gehlot, S.Nath, N.Madhavan, V.Srivastava, M.K.Sharma, B.P.Singh, R.Prasad, A.Rani, A.Banerjee, U.Gupta, N.K.Deb, B.J.Roy

Sub-barrier fusion in the 37Cl + 130Te system

NUCLEAR REACTIONS 130Te(37Cl, X), E=121-155 MeV; measured reaction products, evaporation residues, time of flight of evaporation residue, fusion σ(E) using the HIRA recoil mass spectrometer at the 15UD Pelletron accelerator of IUAC-New Delhi; deduced fusion barrier distributions, astrophysical S factor, logarithmic derivative L(E) factor. Comparison with coupled-channels code calculations using CCFULL code. Systematics of reduced fusion excitation functions of 37Cl projectiles on 58,60,62,64Ni, 130Te targets at sub-barrier energies.

doi: 10.1103/PhysRevC.99.024607
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6360.


2019SH02      Phys.Rev. C 99, 014608 (2019)

M.K.Sharma, M.M.Musthafa, M.Shuaib, M.Kumar, V.R.Sharma, A.Yadav, P.P.Singh, B.P.Singh, R.Prasad

Semiclassical and quantum mechanical analysis of α-particle-induced reactions on praseodymium: A study relevant to precompound emission

NUCLEAR REACTIONS 141Pr(α, n), (α, 2n), E=14.2-40.0 MeV; measured Eγ, Iγ of offline irradiated sample, excitation functions, σ(E) at VECC-Kolkata cyclotron facility; deduced role of precompound emission. Comparison with previous experimental values, and theoretical predictions based on semiclassical model codes: PACE4, TALYS-1.9, ACT, and ALICE91, and the quantum mechanical model code EXIFON. 141Pr, 159Tb, 181Ta, 197Au, 203Tl(α, n), E=17-32 MeV; systematics of precompound fraction.

doi: 10.1103/PhysRevC.99.014608
Citations: PlumX Metrics


2019SH08      Nucl.Phys. A983, 276 (2019)

I.Sharma, R.Kumar, M.K.Sharma

Relevance of different Skyrme forces in the dynamics of 40, 48Ca + 96Zr reactions

NUCLEAR REACTIONS 96Zr(40Ca, x), (48Ca, x), E(cm)=85-107 MeV; calculated scattering potential, fusion σ using Wong formula and extended Wong formula with different Skyrme interactions, fusion σ with considered 1n transfer using GSk1 force and variation in angular momentum with respect to E(cm); calculated fragmentation potential at E(cm)=106.8 MeV, preformation probability vs fragment mass using Dynamical-Cluster-Decay Model (DCM). Cross sections compared with data.

doi: 10.1016/j.nuclphysa.2018.11.002
Citations: PlumX Metrics


2019SH09      Phys.Rev. C 99, 024617 (2019)

M.Shuaib, V.R.Sharma, A.Yadav, S.Thakur, M.K.Sharma, I.Majeed, M.Kumar, P.P.Singh, D.P.Singh, R.Kumar, R.P.Singh, S.Muralithar, B.P.Singh, R.Prasad

Mass and isotopic yield distributions of fission-like events in the 19F + 169Tm system at low energies

NUCLEAR REACTIONS 169Tm(19F, X)67Ge/75Br/80Sr/84mRb/101Mo/107In/108In/109In/110mIn/115Sb/120Xe/125Cs/126Ba/128Xe/130Sb/131Te/134Nd/135Nd/137Nd/139Nd/140Sm/156Ho, E=92, 102.5, 105.4 MeV; measured Eγ, Iγ, σ(E) by activation method at IUAC, New Delhi; deduced isotopic yield distributions and fractional independent yield for In and Nd isotopes, mass variance and distribution of fission-like events and heavy residues, isobaric charge dispersion parameter and compared with theoretical calculations, and grazing angular momentum. Systematics of isotopic yield distribution variance in 169Tm(19F, X), (12C, X), 159Tb, 169Tm, 181Ta(16O, X), 232Th(7Li, X), (11B, X), 238U(11B, X), (22Ne, X), 208Pb(22Ne, X) systems.

doi: 10.1103/PhysRevC.99.024617
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6361.


2019SH12      Eur.Phys.J. A 55, 30 (2019)

K.Sharma, G.Sawhney, M.K.Sharma, G.Sawhney

Collective clusterization approach to investigate the relevance of deformation effects in Sn radioactivity

NUCLEAR STRUCTURE 112,146Ba, 120,156Nd, 128,166Gd; calculated mass fragmentation potentials vs fragment mass, preformation probability for spherical and deformed nuclei using Preformed Cluster Model (PCM). 108,110,112,114,116Xe; calculated 8Be preformation and penetration probability, T1/2. 112,114,116,118,120Ba; calculated 12C preformation and penetration probability, T1/2. 116,118,120,122,124Ce; calculated 16O preformation and penetration probability, T1/2. 120,122,124,126,128,130Nd;calculated 20Ne preformation and penetration probability, T1/2. 124,126,128,130Sm; calculated 24Mg preformation and penetration probability, T1/2. 128,130,132,134,136Gd;calculated 28Si preformation and penetration probability, T1/2. 146Ba, 152Ce, 156Nd, 160Sm, 162Sm, 166Gd; fragments 14C, 20O, 24Ne, 28Mg, 30Mg, 34Si, each emission is in the way that the daughter nucleus is for each case 132Sn; calculated fragment preformation and penetration probability, T1/2, for spherical and for β2-deformed nuclei; calculated also the influence of shell corrections and of different versions of proximity potential.

doi: 10.1140/epja/i2019-12697-2
Citations: PlumX Metrics


2019SH20      Nucl.Phys. A986, 1 (2019)

K.Sharma, M.K.Sharma

Fragmentation analysis and α-decay half-lives of trans-Sn nuclei

RADIOACTIVITY 114Ba, 110Xe, 106Te(α)[α-decay chain]; 105Te(α); 150Dy, 152,154Ho, 154Tm(α); calculated α-decay T1/2 containing excited state α-decays, α-decay preformation probability vs number of preceding α-decays within a chain, calculated interaction potential for spontaneous α-decay and fragmentation of 105Te, preformation distribution of yields for spontaneous and induced α-emission using Dynamical Cluster decay Model (DCM), the extension of Preformed Cluster Model (PCM) and different proximity potentials; compared calculated T1/2 for used proximity potentials and also with experimental data.

NUCLEAR REACTIONS 58Ni(58Ni, 2n)116Ba, E=210 MeV; analyzed published results to understand the role of deformation and the difference between gs α-decay and α-decay of excited states created in a reaction.

doi: 10.1016/j.nuclphysa.2019.03.001
Citations: PlumX Metrics


2019SH21      Nucl.Phys. A986, 116 (2019)

I.Sharma, M.K.Sharma

Emission of light charged particles and fission fragments from Hf*and Pt* nuclei

NUCLEAR STRUCTURE 170,174Pt, 170,171,173,174Hf; calculated preformation probability vs fragment mass, σ for emission from excited nuclei (E*≈1.6 MeV and E*≈2.0 MeV) in the spherical and in deformed case using Dynamical Cluster-decay Model (DCM). Compared with available data.

doi: 10.1016/j.nuclphysa.2019.03.009
Citations: PlumX Metrics


2019SH33      Int.J.Mod.Phys. E28, 1950048 (2019)

K.Sharma, M.K.Sharma

Analysis of competing ground state channels observed in decay of Cm isotopes

RADIOACTIVITY 238Cm(32Si), (84Se), 240Cm(32Si), (84Se), 242Cm(34Si), (84Se), 244Cm(36Si), (82Ge), 246Cm(40S), (82Ge), 248Cm(46Ar), (82Ge), 250Cm(46Ar), (82Ge); calculated Q-values, T1/2.

doi: 10.1142/S0218301319500484
Citations: PlumX Metrics


2019SO21      Acta Phys.Pol. B50, 291 (2019)

A.Sood, P.Kumar, R.N.Sahoo, P.P.Singh, A.Yadav, V.R.Sharma, M.K.Sharma, D.P.Singh, U.Gupta, S.Aydin, R.Kumar, B.P.Singh, R.Prasad

Entrance Channel Effects on Fission Fragment Mass Distribution in 12C + 169Tm System

NUCLEAR REACTIONS 169Tm(12C, X), E= 77.18, 83.22, 89.25 MeV; measured Eγ, Iγ(t); deduced production σ of evaporation residues, isotopic yieldsmass distribution of fission fragments.

doi: 10.5506/aphyspolb.50.291
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6310.


2018GR06      Nucl.Phys. A974, 56 (2018)

N.Grover, K.Sandhu, M.K.Sharma

Dynamics of 17F + 58Ni reaction via complete and incomplete fusion processes at above barrier energies

NUCLEAR REACTIONS 58Ni(17F, x), (16O, x), E=54.1, 58.5 MeV; calculated fragmentation potential of composite systems 75Rb and 74Kr vs fragment mass, fragment mass distribution, preformation probability vs fragment mass arising from ER (Evaporation Residue), ER σ vs angular momentum, complete and incomplete fusion using DCM (Dynamical Cluster decay Model) with account for deformation; deduced comparison of incomplete fusion for loosely bound and tightly bound projectiles (17F and 16O).

doi: 10.1016/j.nuclphysa.2018.03.010
Citations: PlumX Metrics


2018JA18      Eur.Phys.J. A 54, 203 (2018)

S.Jain, R.Kumar, M.K.Sharma

Effect of different nuclear density approximations on fusion dynamics within Skyrme Energy Density Formalism

NUCLEAR REACTIONS 58Ni(58Ni, γ)116Ba*, E(cm)=93.45-108.9 MeV; calculated density distribution, potentials for different density approaches, fusion σ, maximal orbital momentum. 58Ni(18O, x), (18O, γ), (40Ca, x), (40Ca, γ), (58Ni, x), (58Ni, γ)(132Sn, x), (132Sn, γ), E not given; calculated fusion σ, reduced fusion σ; compared with data; deduced UFF (Universal Fusion Function).

doi: 10.1140/epja/i2018-12625-0
Citations: PlumX Metrics


2018KA02      Nucl.Phys. A969, 14 (2018)

M.Kaur, B.B.Singh, M.K.Sharma, R.K.Gupta

Analysis of intermediate and light mass fragments from composite systems 26-29Al* formed in 16, 18O + 10, 11B reactions

NUCLEAR REACTIONS 10,11B(16O, x), (18O, x), E=1-4 MeV/nucleon; calculated fragmentation potential for the composite system, fragment mass distribution, fragment preformation probability using DCM (Dynamical Cluster decay Model) for both spherical and deformed nucleus. Light particle emission σ compared to data.

doi: 10.1016/j.nuclphysa.2017.09.014
Citations: PlumX Metrics


2018KA03      Nucl.Phys. A969, 30 (2018)

A.Kaur, M.K.Sharma

Fragmentation analysis of α-induced reactions using clusterization approach

NUCLEAR REACTIONS 113In, 141Pr, 187Re(α, x), Eα≈10-15 MeV; calculated fragmentation potential, preformation probability, penetrability vs fragment mass, σ using DCM (Dynamical Cluster decay Model). Cross-sections compared with published data of the same group.

doi: 10.1016/j.nuclphysa.2017.09.012
Citations: PlumX Metrics


2018KA15      Nucl.Phys. A971, 95 (2018)

G.Kaur, K.Sandhu, M.K.Sharma

Effect of deformations on the compactness of odd-Z superheavy nuclei formed in cold and hot fusion reactions

NUCLEAR REACTIONS 145La(138Ba, x), 155Eu(124Sn, x), 193Ir(86Kr, x), 206Pb(73Ga, x), 209Bi(70Zn, x), 221Ac(58Cr, x), 225Pa(54Ti, x), 231Np(48Ca, x)279Nh, E not given; 145La(140Ba, x), 178Yb(107Tc, x), 195Os(90Rb, x), 208Pb(77Ga, x), 219At(66Ni, x), 229Ac(56Cr, x), 231Pa(54Ti, x), 237Np(48Ca, x)285Nh, E not given; 243Am(48Ca, x)291Mc, 249Bk(48Ca, x)297Ts; 50Ti(209Bi, x)259Db, 54Cr(209Bi, x)260Sg, 58Fe(209Bi, x)267Mt, 64Ni(209Bi, x)273Rg, 70Zn(209Bi, x)279Nh, E not given; calculated deformed barrier for different orientation for hot and cold collisions, deformation, fragmentation mass distribution, yields. Extended fragmentation theory.

doi: 10.1016/j.nuclphysa.2018.01.017
Citations: PlumX Metrics


2018KA23      Int.J.Mod.Phys. E27, 1850043 (2018)

A.Kaur, G.Sawhney, M.K.Sharma, R.K.Gupta

Spontaneous fission of the end product in α-decay chain of recoiled superheavy nucleus: A theoretical study

RADIOACTIVITY 266,267,268Db, 267Rf, 281Rg, 266Lr, 282Cn(α), (SF); calculated preformation probability, penetrability, T1/2. Comparison with available data.

doi: 10.1142/S021830131850043X
Citations: PlumX Metrics


2018KA25      Phys.Rev. C 97, 054602 (2018)

G.Kaur, K.Sandhu, A.Kaur, M.K.Sharma

Dynamics of Db isotopes formed in reactions induced by 238U, 248Cm, and 249Bk across the Coulomb barrier

NUCLEAR REACTIONS 238U(26Mg, X)264Rf*, E near Coulomb barrier; 238U(30Si, X)268Sg*, E near Coulomb barrier; calculated fragmentation potential of 264Rf* and 268Sg* systems. 238U(27Al, X)265Db*, E*=49.5, 61.5 MeV; calculated fusion-fission σ, fragmentation potential, preformation probability of 265Db* system and coulomb, proximity and centrifugal potentials of fission fragments with hot static, cold static, and hot dynamic β2i-deformations. 248Cm(19F, X)267Db*, E*=42.0, 47.0 MeV; 249Bk(18O, X)267Db*, E*=42.0, 47.0 MeV; calculated total interaction potential, barrier height, capture and fusion-fission σ for 4n- and 5n-evaporation residues, fragmentation potential, preformation probability, and penetration probability. Calculations performed using dynamical cluster decay (DCM) and Wong models. Comparison with experimental values.

doi: 10.1103/PhysRevC.97.054602
Citations: PlumX Metrics


2018KA43      Nucl.Phys. A980, 67 (2018)

M.Kaur, B.B.Singh, M.K.Sharma, R.K.Gupta

Study of α-induced reactions forming A=60 compound systems within dynamical cluster-decay model

doi: 10.1016/j.nuclphysa.2018.09.079
Citations: PlumX Metrics


2018PA44      Phys.Atomic Nuclei 81, 417 (2018)

R.N.Panda, M.Panigrahi, M.K.Sharma, S.K.Patra

Evidence of a Proton Halo in 23Al: A Mean Field Analysis

NUCLEAR REACTIONS 12C(22Al, x), (23Al, x), (24Al, x), (25Al, x), (26Al, x), (27Al, x), (28Al, x), (29Al, x), (30Al, x), (31Al, x), (32Al, x), (33Al, x), (34Al, x), (35Al, x), (36Al, x), (37Al, x), (38Al, x), (39Al, x), (40Al, x), (41Al, x), (42Al, x), (43Al, x), (44Al, x), E not given; calculated binding energy, mass excess, deformation β2, charge radius rch using Relativistic Mean Field (RMF) theory, Glauber technique and NL3 parameter set for both spherical and deformed nuclei, spherical neutron ρn and proton ρp radial density distributions, 1p, 2p and 1n separation energies for deformed different Al isotopes; compared with published data and published FRDM calculations. (23Al, x), (24Al, x), (25Al, x), (26Al, x), (27Al, x), (28Al, x), E nt given; calculated Coulomb-modified reaction cross section σR for spherical and for deformed case, depletion factor; compared with data. (23Al, x), E=30, 74 MeV/nucleon; calculated σR vs difussenes parameter, longitudinal momentum distribution of 22Mg; compared with data; deduced possible 23Al proton halo using enhanced sR, high radius, narrow longitudinal momentum distribution and small proton separation energy.

doi: 10.1134/s1063778818040154
Citations: PlumX Metrics


2018SA38      Acta Phys.Pol. B49, 585 (2018)

R.N.Sahoo, M.Kaushik, A.Sood, P.Kumar, V.R.Sharma, A.Yadav, M.Shuaib, D.P.Singh, P.P.Singh, U.Gupta, M.K.Sharma, R.Kumar, B.P.Singh, S.Aydin, H.J.Wollersheim, R.Prasad

Entrance Channel Effect on Incomplete Fusion

NUCLEAR REACTIONS 169Tm(12C, x), E=5-7.5 MeV/nucleon; measured evaporation residues (ER) Eγ, Iγ(time); deduced 177Re σER; calculated σER using statistical model code PACE-IV with different level density parameter; calculated total (summed over all ERs) σT, complete and incomplete fusion σCF, σICF. 103Rh, 115In, 159Tb, 169Tm, 197Au(12C, x), E not given;103Rh, 159Tb, 169Tm(16O, x), E not given; measured reaction products Eγ, Iγ; deduced incomplete fusion fraction vs mass asymmetry (relative projectile-target velocity close to 0.05c vs asymmetry).

doi: 10.5506/aphyspolb.49.585
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6326.


2018SH08      Nucl.Phys. A972, 1 (2018)

K.Sharma, G.Sawhney, M.K.Sharma, R.K.Gupta

Decay of Plutonium isotopes via spontaneous and heavy-ion induced fission paths

NUCLEAR REACTIONS 238U(6He, x)244Pu, E(cm)=15.0-28.8 MeV; calculated fission σ, fragment mass distribution, using DCM (Dynamical Cluster Decay Model) for spherical and β2-deformed nuclei. Compared with data.

RADIOACTIVITY 234,236,238,240,242,244,246Pu(SF); calculated preformation probability vs fragment mass, preformation yield, preformation T1/2, spontaneous fission T1/2 using PCM (Preformed Cluster Model) for hot and cold nuclei, both spherical and deformed, hot and cold. Compared with fragment mass yield data, experimental T1/2.

doi: 10.1016/j.nuclphysa.2018.02.001
Citations: PlumX Metrics


2018SH10      J.Phys.(London) G45, 045102 (2018)

M.Sharma, W.Haider

Study of 11Li+p elastic scattering using BHF formalism with three body force

NUCLEAR REACTIONS 1H(11Li, 11Li), E=62, 68.4, 75 MeV/nucleon; analyzed available data; calculated σ(θ) using the microscopic optical potential calculated within the framework of Brueckner-Hartree-Fock formalism (BHF). The calculation uses Argonne v18 and Urbana v14 inter-nucleon potentials and the Urbana IX (UVIX) model of three body force. Comparison with available data.

doi: 10.1088/1361-6471/aaabd6
Citations: PlumX Metrics


2018SH25      Phys.Rev. C 98, 014605 (2018)

M.Shuaib, V.R.Sharma, A.Yadav, M.K.Sharma, P.P.Singh, D.P.Singh, R.Kumar, R.P.Singh, S.Muralithar, B.P.Singh, R.Prasad

Effects of projectile break-up on fusion cross sections at energies near and above the Coulomb barrier: A case of incomplete fusion

NUCLEAR REACTIONS 175Lu(19F, 4n), (19F, 5n), (19F, 6n), (19F, 3np), (19F, 4np), (19F, 5np), (19F, nα), (19F, 2nα), (19F, 3nα), (19F, 4nα), (19F, 2npα), (19F, 3npα), (19F, 4npα), (19F, 3n2α), (19F, 4n2α), (19F, 4np2α), E=82-112 MeV; measured Eγ, Iγ, σ(E) of evaporation residues populated via complete fusion (CF) and/or incomplete fusion (ICF) processes using offline γ-activation method at the Inter University Accelerator Centre (IUAC-New Delhi). Comparison with statistical model calculations using PACE4 model.

doi: 10.1103/PhysRevC.98.014605
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6343.


2018SH38      Phys.Rev. C 98, 054607 (2018)

M.K.Sharma, M.Kumar, Mohd.Shuaib, V.R.Sharma, A.Yadav, P.P.Singh, B.P.Singh, R.Prasad

Systematic study of precompound neutron emission in α-particle-induced reactions

NUCLEAR REACTIONS 141Pr(α, n), E=10-40 MeV; measured Eγ, Iγ offline, σ(E) at VECC-Kolkata facility. 51V(α, n), E=5-35 MeV; 55Mn(α, n), E=5-25 MeV; 93Nb(α, n), E=10-40 MeV; 121Sn(α, n), E=6-60 MeV; 123Sb(α, n), E=10-40 MeV; 141Pr(α, n), E=10-40 MeV; analyzed σ(E) data; deduced precompound nucleus (PCN) fraction for one neutron channels. Comparison with predictions using ALICE code.

doi: 10.1103/PhysRevC.98.054607
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6348.


2018SH39      Eur.Phys.J. A 54, 205 (2018)

M.K.Sharma, M.Kumar, M.Shuaib, V.R.Sharma, A.Yadav, Pushpendra P.Singh, D.P.Singh, B.P.Singh, R.Prasad

Analysis of experimental cross-section for (α, n) reactions in odd A and odd Z heavy nuclei: A systematics on pre-compound emission

COMPILATION 139La, 159Tb, 181Ta, 197Au, 203Tl(α, n), E=cyclotron; compiled σ; calculated σ, pre-equilibrium fraction using PACE4 (compound nucleus only) and ALICE (includes pre-equilibrium) with varied parameters; deduced parameters influence on the cross sections.

doi: 10.1140/epja/i2018-12634-y
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6329.


2017AL39      Nucl.Phys. A968, 403 (2017)

R.Ali, M.Afzal Ansari, D.Singh, R.Kumar, D.P.Singh, M.K.Sharma, U.Gupta, B.P.Singh, P.D.Shidling, D.Negi, S.Muralithar, R.P.Singh, R.K.Bhowmik

Observed side feeding in incomplete fusion dynamics in 16O + 160Gd reaction at energy ∼ 5.6 MeV/A: Spin distribution measurements

NUCLEAR REACTIONS 160Gd(16O, x), E≈5.6 MeV/nucleon; measured Eγ, Iγ(θ), Ep, Ip(θ), Eα, Iα(θ), pγ-coin, αγ-coin using GDA (Gamma Detector Array) consisting of 12 n-type Compton suppressed HPGE working together with CPDA (Charged Particle Detector Array); deduced relative spin distributions (relative yields vs spin) of different reaction channels, evaporation residues yrast bands side feeding intensities, mean input angular momentum for different reaction channels.

doi: 10.1016/j.nuclphysa.2017.09.005
Citations: PlumX Metrics


2017GR02      Nucl.Phys. A959, 10 (2017)

N.Grover, I.Sharma, G.Kaur, M.K.Sharma

Analysis of dynamical behavior of reactions associated with 118, 120, 122Xe* isotopes

NUCLEAR REACTIONS 90,92,94Zr(28Si, x), E(cm)=63.3-93.5 MeV; calculated fusion σ, fragment preformation probability, maximal angular momentum vs E(cm), deformation, σ using DCM (Dynamical Cluster Decay) and l-summed Wong model; deduced model parameters using fit to the data.

doi: 10.1016/j.nuclphysa.2016.12.008
Citations: PlumX Metrics


2017GR22      Eur.Phys.J. A 53, 239 (2017)

N.Grover, K.Sharma, M.K.Sharma

Dynamics of 47V* formed in 20Ne + 27Al reaction in view of fusion-fission and DIC mechanism

NUCLEAR REACTIONS 27Al(20Ne, γ), E(cm)=83-125 MeV; calculated 51V FF (Fusion-Fission) and DIC (Deep-Inelastic Decay) and ER, IMF, HMF, fission preformation probability vs fragment and vs angular momentum, σ vs angular momentum, grazing angular momentum, T1/2 using collective clusterization of DCM (Dynamical Cluster decay Model) with quadrupole deformation of fragments. Compared with data.

doi: 10.1140/epja/i2017-12439-6
Citations: PlumX Metrics


2017KA02      Nucl.Phys. A957, 274 (2017)

A.Kaur, M.K.Sharma

Competing analysis of α and 2p2n-emission from compound nuclei formed in neutron induced reactions

NUCLEAR REACTIONS 16O, 48Ti, 92Mo, 60Ni(n, α), (n, 2n2p), E=1-100 MeV; calculated preformation probability vs fragment mass using collective clustering approach of DCM (Dynamical Cluster-decay Model). Compared with available data.

doi: 10.1016/j.nuclphysa.2016.09.009
Citations: PlumX Metrics


2017MI20      Nucl.Phys. A968, 436 (2017)

R.Mittal, D.Jain, M.K.Sharma

Influence of sticking vs non-sticking limits of moment of inertia and higher order deformations in the decay of 214, 216Rn* compound systems

NUCLEAR REACTIONS 198Pt(16O, x)214Rn, 198Pt(18O, x)216Rn; calculated deformation, moment of inertia vs intranuclear distance for both sticking and non-sticking case, preformation probability for decay of Rn into two fragments vs fragment mass, deformation, moment of inertia, fusion-evaporation σ, fusion-fission σ using DCM (Dynamical Cluster Decay Model). Compared with available data.

doi: 10.1016/j.nuclphysa.2017.09.001
Citations: PlumX Metrics


2017RA26      Eur.Phys.J. A 53, 208 (2017)

Rajni, D.Jain, Is.Sharma, M.K.Sharma

Impact of spin-orbit density dependent potential in heavy ion reactions forming Se nuclei

NUCLEAR REACTIONS 45Sc(27Al, x), E(cm)=31.74-50.05 MeV; calculated ER σ and IMF σ within DCM (Dynamical Cluster-decay Model) using SEDF (Skyrme energy density formalism) with different forces; deduced effect of quadrupole deformation on spin-orbit density dependent and independent parts.

doi: 10.1140/epja/i2017-12407-2
Citations: PlumX Metrics


2017SA12      Acta Phys.Pol. B48, 629 (2017)

G.Sawhney, A.Kaur, M.K.Sharma, R.K.Gupta

Analysis of Spontaneous Fission in Superheavy Mass Region Using the Dynamical Cluster-decay Model

RADIOACTIVITY 291Lv(α)[291Lv formed via 245Cm+48Ca followed by 2n emission]; calculated α-decay chain of 291Lv. 267Rf(SF)[nucleus at the end of α-decay chain from 291Lv]; calculated fragments quadrupole deformation, preformation probability, T1/2 using DCM (Dynamical Cluster Model). Halflife compared with experimental value.

doi: 10.5506/APhysPolB.48.629
Citations: PlumX Metrics


2017SH19      Eur.Phys.J. A 53, 140 (2017)

I.Sharma, R.Kumar, M.K.Sharma

Probing the role of Skyrme interactions on the fission dynamics of the 6Li + 238U reaction

NUCLEAR REACTIONS 238U(6Li, f), E(cm)=25.00-40.71 MeV; calculated fragmentation potential, fusion σ using 5 different Skyrme forces within CF (Complete Fusion), ICF (InComplete Fusion) and DCM (Dynamical Cluster-decay Model). Compared with available data.

doi: 10.1140/epja/i2017-12331-5
Citations: PlumX Metrics


2017SH31      J.Phys.(London) G44, 105107 (2017)

M.Sharma, W.Haider, A.Bhagwat

Analysis of 11Be + p elastic scattering using a BHF approach

NUCLEAR REACTIONS 1H(11Be, 11Be), E=63.7 MeV/nucleon; calculated optical potential parameters, σ(θ), neutron and proton densities, σ. Comparison with available data.

doi: 10.1088/1361-6471/aa8890
Citations: PlumX Metrics


2017SH32      J.Phys.(London) G44, 105108 (2017)

M.Shuaib, V.R.Sharma, A.Yadav, M.K.Sharma, P.P.Singh, D.P.Singh, R.Kumar, R.P.Singh, S.Muralithar, B.P.Singh, R.Prasad

Influence of incomplete fusion on complete fusion at energies above the Coulomb barrier

NUCLEAR REACTIONS 169Tm(19F, X)185Pt/184Pt/183Pt/184Ir/183Ir/175W/174W/176Ta/175Ta/179Os/181Os/182Os/183Os/174W/175W/176W, E<120 MeV; measured reaction products, Eγ, Iγ; deduced σ, ICF strength function. Comparison with statistical model code pace4.

doi: 10.1088/1361-6471/aa84fb
Citations: PlumX Metrics


2017SH46      Phys.Rev. C 96, 054307 (2017)

K.Sharma, G.Sawhney, M.K.Sharma

Spontaneous fission and competing ground state decay modes of actinide and transactinide nuclei

RADIOACTIVITY 232,234,235,236,238U, 239,240,241Pu, 243Am, 243,245,248Cm, 249Bk, 249,250Cf, 253Es, 250,252,254,256Fm, 255,257,259Md(SF); 252,254,256,257,259No, 252,253,255,256,257,259Lr, 255,256,257,258,259,260Rf, 255Db, 258,260,262Sg, 264Hs(SF); calculated fragmentation potentials as function of fragment mass, half-lives for SF decays, barrier lowering parameter, neck-length parameter, preformation probability, penetrability parameter. Preformed cluster model approach. Comparison with other theoretical calculations of half-lives and, with experimental data.

doi: 10.1103/PhysRevC.96.054307
Citations: PlumX Metrics


2017SH49      Int.J.Mod.Phys. E26, 1750077 (2017)

I.Sharma, M.S.Gautam, M.K.Sharma

Fusion dynamics of 30Si+238U reaction using variety of interaction potentials

NUCLEAR REACTIONS 238U(30Si, X)268Sg, E(cm)=125-165 MeV; calculated fusion barrier, σ. energy-dependent Woods-Saxon potential (EDWSP) model.

doi: 10.1142/S021830131750077X
Citations: PlumX Metrics


2017SI05      Eur.Phys.J. A 53, 12 (2017)

M.Singh Gautam, N.Grover, M.K.Sharma

Complete and incomplete fusion dynamics of 6, 7Li + 159Tb reactions near the Coulomb barrier

NUCLEAR REACTIONS 159Tb(6Li, x), (7Li, x), E(cm)=20-42 MeV; calculated complete fusion σ, incomplete fusion σ, deformation, preformation probabilities using energy-dependent WS potential and DCM (dynamical cluster-decay model). Compared to data.

doi: 10.1140/epja/i2017-12198-4
Citations: PlumX Metrics


2017SO12      Phys.Rev. C 96, 014620 (2017)

A.Sood, P.P.Singh, R.N.Sahoo, P.Kumar, A.Yadav, V.R.Sharma, Mohd.Shuaib, M.K.Sharma, D.P.Singh, U.Gupta, R.Kumar, S.Aydin, B.P.Singh, H.J.Wollersheim, R.Prasad

Fission-like events in the 12C + 169Tm system at low excitation energies

NUCLEAR REACTIONS 169Tm(12C, X)74mBr/74Kr/75Br/75Ge/75Kr/76Kr/77Kr/78As/79Rb/81Sr/84Br/85Zr/86Y/87Zr/89Rb/93Y/94Ru/95Ru/97Nb/98mNb/101Tc/102mTc/104Tc/104Ag/105Tc/105In/175Re/176Re/177Re/178Re/177W/173Ta/174Ta/175Ta/176Ta/171Lu, E=77.81, 83.22, 89.25 MeV; measured Eγ, Iγ, recoil-catcher activation technique, half-life of 74Kr decay, production σ(E) of fission products and evaporation residues, charge and mass distribution of fission fragments at the pelletron accelerator facility of IUAC-New Delhi; deduced fission as one of the competing modes of deexcitation of complete and/or incomplete fusion composites at low excitation energies. Comparison with calculations using PACE code. 181Ta(16O, X), E*=67.04 MeV; 159Tb(16O, X), E*=57.1 MeV; 169Tm(16O, X), E*=61.06 MeV; 232Th(7Li, X), E*=41.7 MeV; 232Th(11B, X), E*=55.7 MeV; 238U(11B, X), E*=67.4 MeV; 238U(22Ne, X), E*=64.5 MeV; 208Pb(20Ne, X), E*=46.4 MeV; analyzed previous experimental data for isotopic yield distributions.

doi: 10.1103/PhysRevC.96.014620
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6310.


2017YA25      Phys.Rev. C 96, 044614 (2017)

A.Yadav, P.P.Singh, Mohd.Shuaib, V.R.Sharma, I.Bala, Unnati, S.Gupta, D.P.Singh, M.K.Sharma, R.Kumar, S.Murlithar, R.P.Singh, B.P.Singh, R.Prasad

Systematic study of low-energy incomplete fusion: Role of entrance channel parameters

NUCLEAR REACTIONS 159Tb(13C, 3n), (13C, 4n), (13C, 5n), (13C, 4np), (13C, 2nα), (13C, 3nα), (13C, 5nα), (13C, 2n2α), (13C, 3n2α), (13C, 4n2α), E AP 58, 60, 70, 73, 85, 88 MeV; measured reaction products, Eγ, Iγ, σ(E) at IUAC facility in New Delhi; deduced ICF fraction, and compared with several other systems in the literature. Comparison with theoretical calculations using PACE4 code. 168Lu; measured half-life of the decay of the g.s. from decay curve of 228-keV γ ray.

doi: 10.1103/PhysRevC.96.044614
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6323.


2016GR01      Phys.Rev. C 93, 014603 (2016)

N.Grover, G.Kaur, M.K.Sharma

Decay analysis of pre-actinide and trans-actinide nuclei formed using various projectiles on a 197Au target at E*CN = 60 MeV

NUCLEAR REACTIONS 197Au(18O, X)215Fr*, E(cm)=92.8 MeV; 197Au(26Mg, X)223Pa*, E(cm)=130.1 MeV; 197Au(30Si, X)227Np*, E(cm)=148.3 MeV; 197Au(36S, X)233Am*, E(cm)=165.1 MeV; calculated fragmentation potential, preformation probability, barrier-lowering parameter as function of fragment mass, fission and quasifission σ(E) for spherical and quadrupole deformed approaches. Collective clusterization approach of the dynamical cluster decay model (DCM). Comparison with available experimental data.

doi: 10.1103/PhysRevC.93.014603
Citations: PlumX Metrics


Back to query form    [Next]


Note: The following list of authors and aliases matches the search parameter M.Sharma: , M.K.SHARMA, M.L.SHARMA, M.M.SHARMA