NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 25, 2024.

Search: Author = G.Ropke

Found 117 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2024BL01      Eur.Phys.J. A 60, 14 (2024)

D.Blaschke, M.Cierniak, O.Ivanytskyi, G.Ropke

Thermodynamics of quark matter with multiquark clusters in an effective Beth-Uhlenbeck type approach

doi: 10.1140/epja/s10050-023-01229-8
Citations: PlumX Metrics


2023NA04      Phys.Rev. C 107, 014618 (2023)

J.B.Natowitz, H.Pais, G.Ropke

Employing ternary fission of 242Pu as a probe of very neutron-rich matter

NUCLEAR REACTIONS 241Pu(n, F), E=thermal; calculated light isotope yields in ternary fission process (n, 1,2,3,4H, 3,4,5,6,7,8,9He, 6,7,8,9,10,11,12Li, 7,8,9,10,11,12,13,14,15Be, 10,11,12,13,14,15,16,17,18B, 13,14,15,16,17,18,19,20). Ternary fission yields modeled within a systematic quantum statistical approach and a generalized relativistic mean-field approach. Investigated the influence of medium effects on yields distributions - self-energy shifts and Pauli blocking. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.014618
Citations: PlumX Metrics


2022BL08      Eur.Phys.J. A 58, 236 (2022)

D.Blaschke, H.Horiuchi, M.Kimura, G.Ropke, P.Schuck

Topical collection on light clusters in nuclei and nuclear matter: nuclear structure and decay, heavy-ion collisions, and astrophysics

doi: 10.1140/epja/s10050-022-00867-8
Citations: PlumX Metrics


2022DO09      Phys.Rev. C 106, 044908 (2022)

B.Donigus, G.Ropke, D.Blaschke

Deuteron yields from heavy-ion collisions at energies available at the CERN Large Hadron Collider: Continuum correlations and in-medium effects

NUCLEAR REACTIONS Pb(Pb, X)2H/1H, T=√ sNN=2.76 TeV; calculated production yields for deuterons, antideutrons, protons and antiprotons. Quantum statistical approach. Comparison with ALICE (LHC) data.

doi: 10.1103/PhysRevC.106.044908
Citations: PlumX Metrics


2022LE04      Eur.Phys.J. A 58, 58 (2022)

S.Lei, S.Li, Q.Zhao, N.Wan, M.Lyu, Z.Ren, H.Horiuchi, G.Ropke, P.Schuck, A.Tohsaki, C.Xu, B.Zhou

Investigating the proton-halo structure of 8B via the extended THSR wave function

NUCLEAR STRUCTURE 8B; calculated standard deviation of the ground state Tohsaki-Horiuchi-Schuck-Ropke (THSR) wave function, contour maps of the energy surface, spatial matter density and valence density distribution, proton density distributions, rms radii and quadrupole moments; deduced proton halo structure in the ground state.

doi: 10.1140/epja/s10050-022-00705-x
Citations: PlumX Metrics


2021LY02      Eur.Phys.J. A 57, 51 (2021)

M.Lyu, Z.Ren, H.Horiuchi, B.Zhou, Y.Funaki, G.Ropke, P.Schuck, A.Tohsaki, C.Xu, T.Yamada

Properties of 8-11Be sotopes with isospin-dependent spin-orbit potential in a cluster approach

NUCLEAR STRUCTURE 8,9,10,11Be; calculated single nucleon wave functions, energy levels, J, π, one-neutron separation energies, root-mean-square radii and density distributions, spectroscopic factor. Tohsaki-Horiuchi-Schuck-Ropke (THSR) wave functions.

doi: 10.1140/epja/s10050-021-00363-5
Citations: PlumX Metrics


2021RO16      Phys.Rev. C 103, L061601 (2021)

G.Ropke, J.B.Natowitz, H.Pais

Nonequilibrium information entropy approach to ternary fission of actinides

NUCLEAR REACTIONS 233,235U, 239,241Pu, 245Cm(n, F), E=thermal; calculated Lagrange parameters, primary yields of 1,2,3,4H, 3,4,5,6,7,8,9He, 6,7,8,9,10,11,12Li, 7,8,9,10,11,12,13,14,15Be, 10,11,12,13,14,15,16,17,18B, 14,15,16,17,18,19,20C from ternary fission using generalized Gibbs distribution within the nonequilibrium statistical operator method. Comparison with available experimental data.

RADIOACTIVITY 248Cm, 252Cf(SF); calculated Lagrange parameters, primary yields of 1,2,3,4H, 3,4,5,6,7,8,9He, 6,7,8,9,10,11,12Li, 7,8,9,10,11,12,13,14,15Be, 10,11,12,13,14,15,16,17,18B, 14,15,16,17,18,19,20C from ternary fission using generalized Gibbs distribution within the nonequilibrium statistical operator method. Comparison with available experimental data.

doi: 10.1103/PhysRevC.103.L061601
Citations: PlumX Metrics


2021YA26      Phys.Rev. C 104, 034302 (2021)

S.Yang, C.Xu, G.Ropke

α-cluster formation and decay: The role of shell structure

NUCLEAR STRUCTURE 20Ne, 44Ti, 104Te, 212Po; calculated overlaps between the intrinsic wave functions of the quartet and the α-particle. 18O, 18,20Ne, 42Ca, 42,44Ti, 102Sn, 102,104Te, 210Pb, 210,212Po; calculated probabilities of finding the α-particle in the localized proton and neutron states. 212Po; calculated α-decay half-lives for different contributing shell model states, and compared to the experimental value. 213Po, 213,214At; calculated bound state wave functions and scattering wave functions for the α emitters in the two-potential approach, α-cluster formation probabilities and α-decay half-lives. Comparison with experimental half-lives. Calculations used quartetting wave function approach (QWFA) to investigate shell structure effects on α-cluster formation and decay.

doi: 10.1103/PhysRevC.104.034302
Citations: PlumX Metrics


2020CU05      Eur.Phys.J. A 56, 295 (2020)

T.Custodio, A.Falcao, H.Pais, C.Providencia, F.Gulminelli, G.Ropke

Light clusters in warm stellar matter: calibrating the cluster couplings

doi: 10.1140/epja/s10050-020-00302-w
Citations: PlumX Metrics


2020FI08      Phys.Rev. C 102, 055807 (2020)

T.Fischer, S.Typel, G.Ropke, N.-U.F.Bastian, G.Martinez-Pinedo

Medium modifications for light and heavy nuclear clusters in simulations of core collapse supernovae: Impact on equation of state and weak interactions

NUCLEAR STRUCTURE 2,3,4H, 3,4,5He; calculated effective nuclear binding energies using generalized relativistic density-functional (gRDF) approach, including a shift due to Pauli blocking, and quantum statistical (QS) model. 1n, 1,2,3,4,5H, 3,4,5He; Z>2; calculated mass fractions as a function of the rest mass density and temperature, radial profiles of velocity, rest mass density, electron fraction, temperature and entropy per baryon, mass fractions, and the composition by the average A and Z as a function of the enclosed baryon mass and radius using the gRDF(DD2) model, and HS(DD2) modified NSE model, before and after core bounce of core collapse supernovae; developed a new equation of state (EOS) for infinite nuclear matter with the inclusion of an improved description of nuclear bound states with special emphasis on hydrogen and helium isotopes, including novel states of 4H, 5H and 5He.

NUCLEAR REACTIONS 2H(ν, e-)pp, (ν-bar, e+)nn, (e-, ν)nn, (e+, ν-bar)pp; 3,4H(ν, e-)3He/4He; 3,4He(ν-bar, e+)3H/4H; derived expressions for medium-dependent charged current reaction rates, in fully inelastic kinematics for processes involving 2H, and in the elastic approximation for processes involving 3H/3He and 4H/4He; implemented new nuclear equation of state (EOS) and weak reaction rates involving light nuclei into supernova model; simulated core-collapse supernova post-bounce phase; analyzed subsequent supernova dynamics and neutrino emission. Investigated role of heavy nuclear clusters and weakly-bound light nuclear clusters for core collapse supernova studies.

doi: 10.1103/PhysRevC.102.055807
Citations: PlumX Metrics


2020NA39      Phys.Rev. C 102, 064621 (2020)

J.B.Natowitz, H.Pais, G.Ropke, J.Gauthier, K.Hagel, M.Barbui, R.Wada

Isotopic equilibrium constants for very low-density and low-temperature nuclear matter

NUCLEAR REACTIONS 241Pu(n, F)1n/1H/2H/3H/4H/3He/4He/5He/6He/7He/8He/9He/7Li/8Li/9Li/11Li/7Be/8Be/9Be/10Be/11Be/12Be/14Be/10B/11B/12B/14B/15B/17B/14C/15C/16C/17C/18C/19C/20C/15N/16N/17N/18N/19N/20N/21N/15O/19O/20O/21O/22O/24O/19F/20F/21F/22F/24F/24Ne/27Ne/24Na/27Na/28Na/30Na/27Mg/28Mg/30Mg/30Al/34Si/35Si/36Si, E=thermal; calculated equilibrium constants for light isotopes, relative yields of the H, He, and Be isotopes produced in the ternary fission of 242Pu. Comparison with available experimental data. Relativistic mean-field model, with a universal medium modification correction for the attractive σ meson coupling.

doi: 10.1103/PhysRevC.102.064621
Citations: PlumX Metrics


2020RO08      Phys.Rev. C 101, 064310 (2020)

G.Ropke

Light p-shell nuclei with cluster structures (4 ≤ A ≤ 16) in nuclear matter

NUCLEAR STRUCTURE 1,2,3,4H, 3,4,5He, 6,7Li, 7,8,9,10,11Be, 10,11B, 12,13,14C, 14,15N, 16O; calculated potential parameters and Pauli blocking shifts, in-medium neutron and proton scattering phase shifts, temperature-dependent shifts, Mott densities for warm dense matter using quantum statistical in-medium approach for light 1p-shell clusters in nuclear matter. Comparison with nuclear statistical equilibrium (NSE) calculations.

doi: 10.1103/PhysRevC.101.064310
Citations: PlumX Metrics


2020RO17      Eur.Phys.J. A 56, 238 (2020)

G.Ropke, J.B.Natowitz, H.Pais

Light element (Z = 1, 2) production from spontaneous ternary fission of 252Cf

RADIOACTIVITY 252Cf(SF); analyzed available data. 1,2,3H, 4,5,6,7,8He; calculated yields within a nonequilibrium approach, and the contribution of unstable nuclei and excited bound states is taken into account.

doi: 10.1140/epja/s10050-020-00247-0
Citations: PlumX Metrics


2020YA03      Phys.Rev. C 101, 024316 (2020)

S.Yang, C.Xu, G.Ropke, P.Schuck, Z.Ren, Y.Funaki, H.Horiuchi, A.Tohsaki, T.Yamada, B.Zhou

α decay to a doubly magic core in the quartetting wave function approach

NUCLEAR STRUCTURE 102Sn, 102,104Te, 210Pb, 210,212Po; calculated single-particle wave functions of protons and neutrons in the quartet, effective potentials of the α cluster, normalized bound state wave functions, scattering wave functions for α-emitters, α-cluster preformation probabilities and α-decay half-lives. Microscopic calculation of α-cluster formation using the quartetting wave function approach. Comparison with experimental data.

RADIOACTIVITY 102Sn, 102,104Te, 210Pb, 210,212Po(α); calculated α-cluster preformation probabilities and α-decay half-lives. Comparison with experimental half-lives.

doi: 10.1103/PhysRevC.101.024316
Citations: PlumX Metrics


2019BA13      Phys.Rev. C 99, 034305 (2019)

D.Bai, Z.Ren, G.Ropke

α clustering from the quartet model

NUCLEAR STRUCTURE 20Ne, 44Ti, 212Po; calculated levels, B(E2), α-cluster formation probability versus critical radius, rms intercluster separation, and radial components of the quartet wave functions for ground state bands using quartet model. Comparison with experimental values, and with other theoretical predictions.

doi: 10.1103/PhysRevC.99.034305
Citations: PlumX Metrics


2019PA29      Phys.Rev. C 99, 055806 (2019)

H.Pais, F.Gulminelli, C.Providencia, G.Ropke

Full distribution of clusters with universal couplings and in-medium effects

NUCLEAR STRUCTURE 2,3H, 3,4He; A=4-12; calculated mass fraction of light- and exotic-clusters within nuclear matter using relativistic mean field framework. Relevance to warm nonhomogeneous matter at subsaturation densities in core-collapse supernova or neutron star mergers.

doi: 10.1103/PhysRevC.99.055806
Citations: PlumX Metrics


2019ZH24      Phys.Rev. C 99, 051303 (2019)

B.Zhou, Y.Funaki, H.Horiuchi, M.Kimura, Z.Ren, G.Ropke, P.Schuck, A.Tohsaki, C.Xu, T.Yamada

Nonlocalized motion in a two-dimensional container of α particles in 3- and 4- states of 12C

NUCLEAR STRUCTURE 12C; calculated level energies, Tohsaki-Horiuchi-Schuck-Ropke (THSR) wave functions, energy curves and contours, and density profiles of the first 3- and 4- states in 12C using container model. Comparison with generator coordinate method (GCM).

doi: 10.1103/PhysRevC.99.051303
Citations: PlumX Metrics


2019ZH33      Phys.Rev. C 100, 014306 (2019)

Q.Zhao, Z.Ren, M.Lyu, H.Horiuchi, Y.Kanada-En'yo, Y.Funaki, G.Ropke, P.Schuck, A.Tohsaki, C.Xu, T.Yamada, B.Zhou

Investigation of isospin-triplet and isospin-singlet pairing in the A=10 nuclei 10B, 10Be, and 10C with an extension of the Tohsaki-Horiuchi-Schuck-Ropke wave function

NUCLEAR STRUCTURE 10Be, 10B, 10C; calculated ground state energies, first 1+ energy in 10B, overlap between total wave function, molecular-orbit component, and pairing component, density distributions of valence nucleons, and average distance between nucleons, and optimized β parameters for the wave functions of ground states and first 1+ state in 10B. Tohsaki-Horiuchi-Schuck-Ropke (THSR) wave function, with and without pairing effects. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.014306
Citations: PlumX Metrics


2018PA17      Phys.Rev. C 97, 045805 (2018)

H.Pais, F.Gulminelli, C.Providencia, G.Ropke

Light clusters in warm stellar matter: Explicit mass shifts and universal cluster-meson couplings

doi: 10.1103/PhysRevC.97.045805
Citations: PlumX Metrics


2018RO02      Nucl.Phys. A970, 224 (2018)

G.Ropke, D.N.Voskresensky, I.A.Kryukov, D.Blaschke

Fermi liquid, clustering, and structure factor in dilute warm nuclear matter

doi: 10.1016/j.nuclphysa.2017.11.013
Citations: PlumX Metrics


2018ZH24      Phys.Rev. C 97, 054323 (2018)

Q.Zhao, Z.Ren, M.Lyu, H.Horiuchi, Y.Funaki, G.Ropke, P.Schuck, A.Tohsaki, C.Xu, T.Yamada, B.Zhou

Investigation of the 9B nucleus and its cluster-nucleon correlations

NUCLEAR STRUCTURE 9B; calculated levels, J, π, 3/2- rotational band levels, rms radii of six levels, density distributions of valence proton, energy of the 1/2+ excited state. New superposed Tohsaki-Horiuchi-Schuck-Ropke (THSR) wavefunction for cluster-correlated dynamics of valence nucleons. Comparison with experimental values and, with other theoretical predictions.

doi: 10.1103/PhysRevC.97.054323
Citations: PlumX Metrics


2017AV02      Phys.Rev. C 95, 045804 (2017)

S.S.Avancini, M.Ferreira, H.Pais, C.Providencia, G.Ropke

Light clusters and pasta phases in warm and dense nuclear matter

doi: 10.1103/PhysRevC.95.045804
Citations: PlumX Metrics


2017XU03      Phys.Rev. C 95, 061306 (2017)

C.Xu, G.Ropke, P.Schuck, Z.Ren, Y.Funaki, H.Horiuchi, A.Tohsaki, T.Yamada, B.Zhou

a-cluster formation and decay in the quartetting wave function approach

RADIOACTIVITY 190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Po, 210Pb, 214Rn, 216Ra, 218Th, 260Sg, 264,268Hs, 270Ds, 286,288Fl, 290,292Lv, 294Og(α); calculated α-cluster preformation probabilities, comparison of experimental and theoretical half-lives. Microscopic calculations for α-cluster formation using quartetting wave function approach.

doi: 10.1103/PhysRevC.95.061306
Citations: PlumX Metrics


2016BA50      Eur.Phys.J. A 52, 244 (2016)

N.-U.Bastian, P.Batyuk, D.Blaschke, P.Danielewicz, Yu.B.Ivanov, Iu.Karpenko, G.Ropke, O.Rogachevsky, H.H.Wolter

Light cluster production at NICA

doi: 10.1140/epja/i2016-16244-5
Citations: PlumX Metrics


2016LY03      Phys.Rev. C 93, 054308 (2016)

M.Lyu, Z.Ren, B.Zhou, Y.Funaki, H.Horiuchi, G.Ropke, P.Schuck, A.Tohsaki, C.Xu, T.Yamada

Investigation of 10Be and its cluster dynamics with the nonlocalized clustering approach

NUCLEAR STRUCTURE 10Be; calculated energies of the first two 0+ states, rms radii, rotational bands built on 0+ states, density distribution and correlations of two valence neutrons, dynamics of α clusters using Tohsaki-Horiuchi-Schuck-Ropke (THSR) wave functions. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.054308
Citations: PlumX Metrics


2016SC21      Phys.Scr. 91, 123001 (2016)

P.Schuck, Y.Funaki, H.Horiuchi, G.Ropke, A.Tohsaki, T.Yamada

Alpha particle clusters and their condensation in nuclear systems

doi: 10.1088/0031-8949/91/12/123001
Citations: PlumX Metrics


2016XU01      Phys.Rev. C 93, 011306 (2016)

C.Xu, Z.Ren, G.Ropke, P.Schuck, Y.Funaki, H.Horiuchi, A.Tohsaki, T.Yamada, B.Zhou

α-decay width of 212Po from a quartetting wave function approach

RADIOACTIVITY 212Po(α); calculated preformation probability and decay half-life using different sets of effective c.m. potentials and implementing four-nucleon correlations. Comparison of calculated α-decay width with experimental value.

doi: 10.1103/PhysRevC.93.011306
Citations: PlumX Metrics


2015HE13      Phys.Rev. C 91, 045805 (2015)

M.Hempel, K.Hagel, J.Natowitz, G.Ropke, S.Typel

Constraining supernova equations of state with equilibrium constants from heavy-ion collisions

NUCLEAR REACTIONS 112,124Sn(40Ar, X), (64Zn, X), E=47 MeV/nucleon; analyzed experimental data obtained using NIMROD 4π multidetector at Texas A and M University for yields of light particles; deduced temperature and densities, equilibrium constants (ECs) for α, d, t, 3He, mass fraction of heavy nuclei. Cluster formation in heavy-ion collisions, and equation of state (EOS) of warm and dense nuclear matter. Quantum statistical (QS) approach.

doi: 10.1103/PhysRevC.91.045805
Citations: PlumX Metrics


2015LY01      Phys.Rev. C 91, 014313 (2015)

M.Lyu, Z.Ren, B.Zhou, Y.Funaki, H.Horiuchi, G.Ropke, P.Schuck, A.Tohsaki, C.Xu, T.Yamada

Investigation of 9Be from a nonlocalized clustering concept

NUCLEAR STRUCTURE 9Be; calculated levels, J, π, bands, contour maps of binding energy surface as function of β parameters, density distribution contour of the intrinsic ground state. Nonlocalized clustering calculations based on Tohsaki-Horiuchi-Schuck-Ropke (THSR) wave function with a new phase factor. Comparison with available experimental results.

doi: 10.1103/PhysRevC.91.014313
Citations: PlumX Metrics


2015RO21      Phys.Rev. C 92, 054001 (2015)

G.Ropke

Nuclear matter equation of state including two-, three-, and four-nucleon correlations

NUCLEAR STRUCTURE 2,3H, 3,4He; calculated binding energies, effective coupling strengths, suppression and Pauli blocking shift parameters. Equation of state (EOS) for light clusters in nuclear matter at subsaturation densities using a quantum statistical approach.

doi: 10.1103/PhysRevC.92.054001
Citations: PlumX Metrics


2014HA05      Eur.Phys.J. A 50, 39 (2014)

K.Hagel, J.B.Natowitz, G.Ropke

The equation of state and symmetry energy of low-density nuclear matter

NUCLEAR STRUCTURE 2,3H, 3,4He; calculated cluster mass excess, binding energy in low-density symmetric nuclear matter using RMF.

doi: 10.1140/epja/i2014-14039-4
Citations: PlumX Metrics


2014RO20      Phys.Rev. C 90, 034304 (2014)

G.Ropke, P.Schuck, Y.Funaki, H.Horiuchi, Z.Ren, A.Tohsaki, C.Xu, T.Yamada, B.Zhou

Nuclear clusters bound to doubly magic nuclei: The case of 212Po

NUCLEAR STRUCTURE 212Po; calculated internal four-nucleon energy, Coulomb and isospin-dependent Woods-Saxon potentials, Thomas-Fermi density, Fermi energy, E(α). Shell model calculations with cluster formation in inhomogeneous nuclear systems, four-particle (α-like) correlations in doubly-magic 208Pb core. Tohsaki-Horiuchi-Schuck-Ropke wave function approach in shell-model calculations. Discussed different physics behavior of an α-like cluster as compared to a deuteron-like cluster.

doi: 10.1103/PhysRevC.90.034304
Citations: PlumX Metrics


2014TY01      Eur.Phys.J. A 50, 17 (2014)

S.Typel, H.H.Wolter, G.Ropke, D.Blaschke

Effects of the liquid-gas phase transition and cluster formation on the symmetry energy

doi: 10.1140/epja/i2014-14017-x
Citations: PlumX Metrics


2014WU06      Phys.Rev. C 90, 011601 (2014), Erratum Phys.Rev. C 90, 019903 (2014)

S.Wuenschel, H.Zheng, K.Hagel, B.Meyer, M.Barbui, E.J.Kim, G.Ropke, J.B.Natowitz

Nucleation and cluster formation in low-density nucleonic matter: A mechanism for ternary fission

NUCLEAR REACTIONS 241Pu(n, F), E=thermal; calculated ternary fission yields as a function of mass and charge of products of A<40. Nucleation and cluster formation in the low-density neck between the two large fragments. Nuclear statistical equilibrium (NSE) calculations. Comparison with experimental data. 242Pu(SF); plotted experimental relative yields of ternary cluster isotopes.

doi: 10.1103/PhysRevC.90.011601
Citations: PlumX Metrics


2014ZH10      Phys.Rev. C 89, 034319 (2014)

B.Zhou, Y.Funaki, H.Horiuchi, Z.Ren, G.Ropke, P.Schuck, A.Tohsaki, C.Xu, T.Yamada

Nonlocalized cluster dynamics and nuclear molecular structure

NUCLEAR STRUCTURE 8Be, 12C, 20Ne; calculated levels, J, π, energy surfaces, density distributions, quadrupole moments using Tohsaki-Horiuchi-Schuck-Ropke (THSR) wave function. Container model. Nonlocalized cluster dynamics for 2α, 3α, and 16O+α cluster systems.

doi: 10.1103/PhysRevC.89.034319
Citations: PlumX Metrics


2013RO01      Nucl.Phys. A897, 70 (2013)

G.Ropke, N.-U.Bastian, D.Blaschke, T.Klahn, S.Typel, H.H.Wolter

Cluster-virial expansion for nuclear matter within a quasiparticle statistical approach

doi: 10.1016/j.nuclphysa.2012.10.005
Citations: PlumX Metrics


2013RO21      Phys.Rev. C 88, 024609 (2013)

G.Ropke, S.Shlomo, A.Bonasera, J.B.Natowitz, S.J.Yennello, A.B.McIntosh, J.Mabiala, L.Qin, S.Kowalski, K.Hagel, M.Barbui, K.Schmidt, G.Giuliani, H.Zheng, S.Wuenschel

Density determinations in heavy ion collisions

doi: 10.1103/PhysRevC.88.024609
Citations: PlumX Metrics


2013ZH25      Phys.Rev.Lett. 110, 262501 (2013)

B.Zhou, Y.Funaki, H.Horiuchi, Z.Ren, G.Ropke, P.Schuck, A.Tohsaki, C.Xu, T.Yamada

Nonlocalized Clustering: A New Concept in Nuclear Cluster Structure Physics

NUCLEAR STRUCTURE 20Ne; calculated energy surfaces, levels, J, π. The Tohsaki-Horiuchi-Schuck-Ropke (THSR) wave function, α+16O resonating group method.

doi: 10.1103/PhysRevLett.110.262501
Citations: PlumX Metrics


2012FU10      Prog.Theor.Phys.(Kyoto), Suppl. 196, 439 (2012)

Y.Funaki, T.Yamada, H.Horiuchi, G.Ropke, P.Schuck, A.Tohsaki

Alpha Cluster States and Condensation in 16O

NUCLEAR STRUCTURE 16O, 12C, 20Ne; calculated energy spectra, J, π, rotational band of the α+Hoyle state. Orthogonality condition model and Gauss expansion method calculations.

doi: 10.1143/PTPS.196.439
Citations: PlumX Metrics


2012HA04      Phys.Rev.Lett. 108, 062702 (2012)

K.Hagel, R.Wada, L.Qin, J.B.Natowitz, S.Shlomo, A.Bonasera, G.Ropke, S.Typel, Z.Chen, M.Huang, J.Wang, H.Zheng, S.Kowalski, C.Bottosso, M.Barbui, M.R.D.Rodrigues, K.Schmidt, D.Fabris, M.Lunardon, S.Moretto, G.Nebbia, S.Pesente, V.Rizzi, G.Viesti, M.Cinausero, G.Prete, T.Keutgen, Y.El Masri, Z.Majka

Experimental Determination of In-Medium Cluster Binding Energies and Mott Points in Nuclear Matter

NUCLEAR REACTIONS 112,124Sn(40Ar, X), (64Zn, X), E=47 MeV/nucleon; measured reaction products, Eα, Iα. 2,3H, 3,4He; deduced temperature and density dependence, binding energies, Pauli blocking effects in a quantum statistical approach.

doi: 10.1103/PhysRevLett.108.062702
Citations: PlumX Metrics


2012QI06      Phys.Rev.Lett. 108, 172701 (2012)

L.Qin, K.Hagel, R.Wada, J.B.Natowitz, S.Shlomo, A.Bonasera, G.Ropke, S.Typel, Z.Chen, M.Huang, J.Wang, H.Zheng, S.Kowalski, M.Barbui, M.R.D.Rodrigues, K.Schmidt, D.Fabris, M.Lunardon, S.Moretto, G.Nebbia, S.Pesente, V.Rizzi, G.Viesti, M.Cinausero, G.Prete, T.Keutgen, Y.El Masri, Z.Majka, Y.G.Ma

Laboratory Tests of Low Density Astrophysical Nuclear Equations of State

NUCLEAR REACTIONS 112,124Sn(40Ar, X), (64Zn, X)2H/3H/3He/4He, E=47 MeV/nucleon; measured reaction products, Eα, Iα; deduced yields, equilibrium constants for α particle production. Astrophysical equation of state calculations.

doi: 10.1103/PhysRevLett.108.172701
Citations: PlumX Metrics


2012SC14      Prog.Theor.Phys.(Kyoto), Suppl. 196, 56 (2012)

P.Schuck, T.Sogo, G.Ropke

Quartetting in Nuclear Matter

doi: 10.1143/PTPS.196.56
Citations: PlumX Metrics


2012WA20      Phys.Rev. C 85, 064618 (2012)

R.Wada, K.Hagel, L.Qin, J.B.Natowitz, Y.G.Ma, G.Ropke, S.Shlomo, A.Bonasera, S.Typel, Z.Chen, M.Huang, J.Wang, H.Zheng, S.Kowalski, C.Bottosso, M.Barbui, M.R.D.Rodrigues, K.Schmidt, D.Fabris, M.Lunardon, S.Moretto, G.Nebbia, S.Pesente, V.Rizzi, G.Viesti, M.Cinausero, G.Prete, T.Keutgen, Y.El Masri, Z.Majka

Nuclear matter symmetry energy at 0.03 ≤ ρ/ρ0

NUCLEAR REACTIONS 112,124Sn(40Ar, X), (64Zn, X), E=47 MeV/nucleon; measured charged particle and neutron spectra and multiplicity; deduced coalescence parameters and model volumes as a function of surface velocity, nuclear temperature, density, isoscaling parameter, symmetry free energy and symmetry entropy versus density. NIMROD multidetector at Texas A

doi: 10.1103/PhysRevC.85.064618
Citations: PlumX Metrics


2012YA02      Phys.Rev. C 85, 034315 (2012)

T.Yamada, Y.Funaki, T.Myo, H.Horiuchi, K.Ikeda, G.Ropke, P.Schuck, A.Tohsaki

Isoscalar monopole excitations in 16O: α-cluster states at low energy and mean-field-type states at higher energy

NUCLEAR STRUCTURE 16O; calculated energies of 0+ levels, rms charge radii, E0 transition matrix elements, particle decay widths, spectroscopic factors, isoscalar monopole strength functions using four α cluster model and α+12C orthogonality condition model (OCM) model. Discussed dual nature of 16O ground state. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.034315
Citations: PlumX Metrics


2012ZH29      Phys.Rev. C 86, 014301 (2012)

B.Zhou, Z.-z.Ren, C.Xu, Y.Funaki, T.Yamada, A.Tohsaki, H.Horiuchi, P.Schuck, G.Ropke

New concept for the ground-state band in 20Ne within a microscopic cluster model

NUCLEAR STRUCTURE 20Ne; calculated energy surface contour maps of ground-state and first 2+ states, wave function overlaps, minimum energies and distances between α cluster and 16O cluster with respect to different spin-projected states for the ground-state band members up to 8+. Brink microscopic cluster model based on generalized Tohsaki, Horiuchi, Schuck, Ropke (THSR) wave functions. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.014301
Citations: PlumX Metrics


2011FU08      Int.J.Mod.Phys. E20, 874 (2011)

Y.Funaki, T.Yamada, H.Horiuchi, G.Ropke, P.Schuck, A.Tohsaki

Alpha clustering and condensation in nuclei

NUCLEAR STRUCTURE 16O; calculated energy levels, J, π, rms radii, occupation of the single-α orbitals. OCM and THSR calculations, comparison with experimental data.

doi: 10.1142/S0218301311018873
Citations: PlumX Metrics


2011HE20      Phys.Rev. C 84, 055804 (2011)

M.Hempel, J.Schaffner-Bielich, S.Typel, G.Ropke

Light clusters in nuclear matter: Excluded volume versus quantum many-body approaches

doi: 10.1103/PhysRevC.84.055804
Citations: PlumX Metrics


2011NA20      Int.J.Mod.Phys. E20, 987 (2011)

J.B.Natowitz, K.Hagel, R.Wada, L.Qin, Z.Chen, P.Sahu, G.Ropke, S.Kowalski, C.Bottosso, S.Shlomo, M.Barbui, D.Fabris, M.Lunardon, S.Moretto, G.Nebbia, S.Pesente, V.Rizzi, G.Viesti, M.Cinausero, G.Prete, T.Keutgen, Y.El Masri, Z.Majka

Clustered low density nuclear matter in near Fermi energy collisions

doi: 10.1142/S0218301311019118
Citations: PlumX Metrics


2011RO13      Int.J.Mod.Phys. E20, 897 (2011)

G.Ropke

Light clusters in nuclear matter

doi: 10.1142/S0218301311018927
Citations: PlumX Metrics


2011RO39      Nucl.Phys. A867, 66 (2011)

G.Ropke

Parametrization of light nuclei quasiparticle energy shifts and composition of warm and dense nuclear matter

NUCLEAR STRUCTURE 2,3H, 3,4H; calculated clusterization, mass excess, radius using cluster mean field approximation, generalized Bethe-Uhlenbeck formula.

doi: 10.1016/j.nuclphysa.2011.07.010
Citations: PlumX Metrics


2011SC14      Int.J.Mod.Phys. E20, 889 (2011)

P.Schuck, T.Sogo, G.Ropke

Critical temperature for α-condensation in asymmetric nuclear matter: The astrophysical context

doi: 10.1142/S0218301311018903
Citations: PlumX Metrics


2010FU06      Phys.Rev. C 82, 024312 (2010)

Y.Funaki, T.Yamada, A.Tohsaki, H.Horiuchi, G.Ropke, P.Schuck

Microscopic study of 4α-particle condensation with inclusion of resonances

NUCLEAR STRUCTURE 16O; calculated binding energies, energy spectra, rms radii, monopole M(E0) matrix elements, α-decay widths, nucleon density distributions, occupation probabilities, and momentum distributions of four 0+ states in 4α-particle condensate using Tohsaki-Horiuchi- Schuck-Ropke (THSR) wave function. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.024312
Citations: PlumX Metrics


2010NA07      Phys.Rev.Lett. 104, 202501 (2010)

J.B.Natowitz, G.Ropke, S.Typel, D.Blaschke, A.Bonasera, K.Hagel, T.Klahn, S.Kowalski, L.Qin, S.Shlomo, R.Wada, H.H.Wolter

Symmetry Energy of Dilute Warm Nuclear Matter

NUCLEAR REACTIONS 92Mo, 197Au(64Zn, X), E=35 MeV/nucleon; analyzed heavy-ion collision data; deduced free neutron and proton yields, temperatures, densities, symmetry energy. Quantum-statistical model of nuclear matter.

doi: 10.1103/PhysRevLett.104.202501
Citations: PlumX Metrics


2010SO11      Phys.Rev. C 81, 064310 (2010)

T.Sogo, G.Ropke, P.Schuck

Many-body approach for quartet condensation in strong coupling

doi: 10.1103/PhysRevC.81.064310
Citations: PlumX Metrics


2010SO17      Phys.Rev. C 82, 034322 (2010)

T.Sogo, G.Ropke, P.Schuck

Critical temperature for α-particle condensation in asymmetric nuclear matter

doi: 10.1103/PhysRevC.82.034322
Citations: PlumX Metrics


2010TY01      Phys.Rev. C 81, 015803 (2010)

S.Typel, G.Ropke, T.Klahn, D.Blaschke, H.H.Wolter

Composition and thermodynamics of nuclear matter with light clusters

doi: 10.1103/PhysRevC.81.015803
Citations: PlumX Metrics


2009FU14      Int.J.Mod.Phys. E18, 2083 (2009)

Y.Funaki, T.Yamada, H.Horiuchi, G.Ropke, P.Schuck, A.Tohsaki

α-particle condensed state in 16O

NUCLEAR STRUCTURE 16O; calculated energy spectra, J, π, rms radii, monopole transition matrix elements, single-α orbits.

doi: 10.1142/S0218301309014330
Citations: PlumX Metrics


2009FU16      Phys.Rev. C 80, 064326 (2009)

Y.Funaki, H.Horiuchi, W.von Oertzen, G.Ropke, P.Schuck, A.Tohsaki, T.Yamada

Concepts of nuclear α-particle condensation

NUCLEAR STRUCTURE 12C, 16O; calculated occupation of single-α orbitals, binding energies, and momentum distribution of Hoyle states in 12C and 16O using antisymmetrized α-particle product state wave functions or THSR (Tohsaki-Horiuchi-Schuck-Roepke) α-cluster wave functions. Discussed α-cluster phenomenon in connection with experimental αγ-coin spectra for 24Mg(28Si, 3α)40Ca and 24Mg(28Si, 12C)40Ca reactions.

doi: 10.1103/PhysRevC.80.064326
Citations: PlumX Metrics


2009RO01      Phys.Rev. C 79, 014002 (2009)

G.Ropke

Light nuclei quasiparticle energy shifts in hot and dense nuclear matter.

NUCLEAR STRUCTURE 1n, 1,2,3H, 3,4He; calculated binding energies in low density limit and nuclear statistical equilibrium, cluster quasiparticle shifts. Finite temperature Green function approach

doi: 10.1103/PhysRevC.79.014002
Citations: PlumX Metrics


2009SH12      Phys.Rev. C 79, 034604 (2009)

S.Shlomo, G.Ropke, J.B.Natowitz, L.Qin, K.Hagel, R.Wada, A.Bonasera

Effect of medium dependent binding energies on inferring the temperatures and freeze-out density of disassembling hot nuclear matter from cluster yields

doi: 10.1103/PhysRevC.79.034604
Citations: PlumX Metrics


2009SO06      Phys.Rev. C 79, 051301 (2009)

T.Sogo, R.Lazauskas, G.Ropke, P.Schuck

Critical temperature for α-particle condensation within a momentum-projected mean-field approach

doi: 10.1103/PhysRevC.79.051301
Citations: PlumX Metrics


2009YA05      Phys.Rev. C 79, 054314 (2009)

T.Yamada, Y.Funaki, H.Horiuchi, G.Ropke, P.Schuck, A.Tohsaki

Internal one-particle density matrix for Bose-Einstein condensates with finite number of particles in a harmonic potential

doi: 10.1103/PhysRevC.79.054314
Citations: PlumX Metrics


2008FU06      Phys.Rev. C 77, 064312 (2008)

Y.Funaki, H.Horiuchi, G.Ropke, P.Schuck, A.Tohsaki, T.Yamada

Density-induced suppression of the α-particle condensate in nuclear matter and the structure of α-cluster states in nuclei

NUCLEAR STRUCTURE 12C, 16O; calculated condensation fraction for alpha-matter and its dependence on baryon density. Jastrow-Feenberg approach.

doi: 10.1103/PhysRevC.77.064312
Citations: PlumX Metrics


2008FU11      Phys.Rev.Lett. 101, 082502 (2008)

Y.Funaki, T.Yamada, H.Horiuchi, G.Ropke, P.Schuck, A.Tohsaki

α-Particle Condensation in 16O Studied with a Full Four-Body Orthogonality Condition Model Calculation

NUCLEAR STRUCTURE 16O; calculated energy and rms radii of ground and excited 0+ states and monopole transition matrix elements, M(E0) to ground state; comparison with experiments; semi-microscopic cluster model.

doi: 10.1103/PhysRevLett.101.082502
Citations: PlumX Metrics


2008FU14      Int.J.Mod.Phys. E17, 2087 (2008)

Y.Funaki, T.Yamada, H.Horiuchi, G.Ropke, P.Schuck, A.Tohsaki

Present status of alpha-particle condensate states in self-conjugate 4n nuclei

NUCLEAR STRUCTURE 12C, 16O; calculated low density states near the 3α and 4α breakup threshold, energy levels, J, π. OCM and THSR approaches.

doi: 10.1142/S0218301308011148
Citations: PlumX Metrics


2008RO28      Int.J.Mod.Phys. E17, 2145 (2008)

G.Ropke

Cluster formation and the nuclear matter equation of state

doi: 10.1142/S0218301308011240
Citations: PlumX Metrics


2008SU09      Phys.Rev. C 77, 055804 (2008)

K.Sumiyoshi, G.Ropke

Appearance of light clusters in post-bounce evolution of core-collapse supernovae

doi: 10.1103/PhysRevC.77.055804
Citations: PlumX Metrics


2007SC21      Prog.Part.Nucl.Phys. 59, 285 (2007)

P.Schuck, Y.Funaki, H.Horiuchi, G.Ropke, A.Tohsaki, T.Yamada

Quartetting in fermionic matter and α-particle condensation in nuclear systems

doi: 10.1016/j.ppnp.2006.12.003
Citations: PlumX Metrics


2007SC38      Nucl.Phys. A788, 293c (2007)

P.Schuck, Y.Funaki, H.Horiuchi, G.Ropke, A.Tohsaki, T.Yamada

α-Particle Condensation in Nuclear Systems

NUCLEAR STRUCTURE 12C; calculated binding energy, radii, monopole matrix elements and inelastic form factor. 16O; calculated 0+ state energies. Hoyle state discussed.

doi: 10.1016/j.nuclphysa.2007.01.015
Citations: PlumX Metrics


2007WA32      Phys.Lett. B 653, 173 (2007)

T.Wakasa, E.Ihara, K.Fujita, Y.Funaki, K.Hatanaka, H.Horiuchi, M.Itoh, J.Kamiya, G.Ropke, H.Sakaguchi, N.Sakamoto, Y.Sakemi, P.Schuck, Y.Shimizu, M.Takashina, S.Terashima, A.Tohsaki, M.Uchida, H.P.Yoshida, M.Yosoi

New candidate for an alpha cluster condensed state in 16O(α, α') at 400 MeV

NUCLEAR REACTIONS 16O(α, α'), E=400 MeV; analyzed elastic and inelastic σ(θ). Comparison with model calculations. Evidence for cluster structure.

doi: 10.1016/j.physletb.2007.08.016
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2060.


2006FU09      Eur.Phys.J. A 28, 259 (2006)

Y.Funaki, A.Tohsaki, H.Horiuchi, P.Schuck, G.Ropke

Inelastic form factors to alpha-particle condensate states in 12C and 16O: What can we learn?

NUCLEAR STRUCTURE 12C, 16O; calculated inelastic and elastic form factors, α-cluster states energies, related features. Hoyle state discussed, comparison with data.

doi: 10.1140/epja/i2006-10061-5
Citations: PlumX Metrics


2006KL08      Phys.Rev. C 74, 035802 (2006)

T.Klahn, D.Blaschke, S.Typel, E.N.E.van Dalen, A.Faessler, C.Fuchs, T.Gaitanos, H.Grigorian, A.Ho, E.E.Kolomeitsev, M.C.Miller, G.Ropke, J.Trumper, D.N.Voskresensky, F.Weber, H.H.Wolter

Constraints on the high-density nuclear equation of state from the phenomenology of compact stars and heavy-ion collisions

doi: 10.1103/PhysRevC.74.035802
Citations: PlumX Metrics


2005FU02      Eur.Phys.J. A 24, 321 (2005)

Y.Funaki, A.Tohsaki, H.Horiuchi, P.Schuck, G.Ropke

Resonance states in 12C and α-particle condensation

NUCLEAR STRUCTURE 12C; calculated resonance levels J, π, α-decay widths, α-cluster structure. Analytic continuation in the coupling constant.

doi: 10.1140/epja/i2004-10238-x
Citations: PlumX Metrics


2005RO36      Part. and Nucl., Lett. 128, 25 (2005)

G.Ropke, A.Grigo, K.Sumiyoshi, H.Shen

The nuclear matter equation of state including light clusters


2004SC27      Nucl.Phys. A738, 94 (2004)

P.Schuck, Y.Funaki, H.Horiuchi, G.Ropke, A.Tohsaki, T.Yamada

Alpha-particle condensation in nuclei

NUCLEAR STRUCTURE 12C; calculated α-cluster states energies, radii. Other nuclides discussed.

doi: 10.1016/j.nuclphysa.2004.04.075
Citations: PlumX Metrics


2004TO15      Nucl.Phys. A738, 259 (2004)

A.Tohsaki, H.Horiuchi, P.Schuck, G.Ropke

Wide perspective of alpha condensation in light 4N Nuclei

NUCLEAR STRUCTURE 8Be, 12C, 16O, 20Ne; calculated α-cluster states energies, radii, α condensation features.

doi: 10.1016/j.nuclphysa.2004.04.042
Citations: PlumX Metrics


2003FU06      Phys.Rev. C 67, 051306 (2003)

Y.Funaki, A.Tohsaki, H.Horiuchi, P.Schuck, G.Ropke

Analysis of previous microscopic calculations for the second 0+ state in 12C in terms of 3-α particle Bose-condensed state

NUCLEAR STRUCTURE 12C; calculated 0+ state wave function, radius, related features. Comparison of microscopic cluster model and condensed state results.

doi: 10.1103/PhysRevC.67.051306
Citations: PlumX Metrics


2003FU21      Mod.Phys.Lett. A 18, 170 (2003)

Y.Funaki, H.Horiuchi, A.Tohsaki, P.Schuck, G.Ropke

Description of 8Be as deformed gas- Like two-alpha-particle states

NUCLEAR STRUCTURE 8Be; calculated level energies, widths, deformation. Deformed α-cluster condensate.

doi: 10.1142/S0217732303010181
Citations: PlumX Metrics


2003SC43      Acta Phys.Hung.N.S. 18, 241 (2003)

P.Schuck, H.Horiuchi, G.Ropke, A.Tohsaki

Alpha-Particle Condensation in Nuclei

doi: 10.1556/APH.18.2003.2-4.19
Citations: PlumX Metrics


2003SC44      C.R.Physique 4, 537 (2003)

P.Schuck, H.Horiuchi, G.Ropke, A.Tohsaki

Alpha-particle condensation in nuclei

doi: 10.1016/S1631-0705(03)00056-2
Citations: PlumX Metrics


2002FU19      Prog.Theor.Phys.(Kyoto) 108, 297 (2002)

Y.Funaki, H.Horiuchi, A.Tohsaki, P.Schuck, G.Ropke

Description of 8Be as Deformed Gas-Like Two-Alpha-Particle States

NUCLEAR STRUCTURE 8Be; calculated level energies, widths, deformation. Deformed α-cluster condensate.

doi: 10.1143/PTP.108.297
Citations: PlumX Metrics


2002IS09      Phys.Rev. C66, 034315 (2002)

A.A.Isayev, G.Ropke

Anisotropic Multigap Superfluid States in Nuclear Matter

doi: 10.1103/PhysRevC.66.034315
Citations: PlumX Metrics


2001KU05      Phys.Rev. C63, 034605 (2001)

C.Kuhrts, M.Beyer, P.Danielewicz, G.Ropke

Medium Corrections in the Formation of Light Charged Particles in Heavy Ion Reactions

NUCLEAR REACTIONS 119Sn(129Xe, X), E=50 MeV/nucleon; calculated light charged particle spectra, medium effects. Microscopic transport model, comparison with data.

doi: 10.1103/PhysRevC.63.034605
Citations: PlumX Metrics


2001TO23      Phys.Rev.Lett. 87, 192501 (2001)

A.Tohsaki, H.Horiuchi, P.Schuck, G.Ropke

Alpha Cluster Condensation in 12C and 16O

NUCLEAR STRUCTURE 12C, 16O; calculated α-cluster states energies, widths.

doi: 10.1103/PhysRevLett.87.192501
Citations: PlumX Metrics


2001WI14      Nucl.Phys. A688, 569c (2001)

A.Wierling, Th.Millat, G.Ropke

Dynamical Screening Corrections to the Electron Capture Rate by 7Be

RADIOACTIVITY 7Be(EC); calculated capture rate in stellar environment. Comparison with other calculations.

doi: 10.1016/S0375-9474(01)00790-4
Citations: PlumX Metrics


2000BE46      Phys.Lett. 488B, 247 (2000)

M.Beyer, S.A.Sofianos, C.Kuhrts, G.Ropke, P.Schuck

The α-Particle in Nuclear Matter

NUCLEAR STRUCTURE 4He; calculated binding energy for an α particle inside nuclear matter as a function of nuclear density. Solution of Alt-Grassberger-Sandhas equations.

doi: 10.1016/S0370-2693(00)00908-4
Citations: PlumX Metrics


2000KU05      Nucl.Phys. A668, 137 (2000)

C.Kuhrts, M.Beyer, G.Ropke

Deuteron Formation in Nuclear Matter

NUCLEAR REACTIONS 2H(n, n), (n, np), E < 50 MeV; calculated total, elastic, breakup σ. Application to deuteron formation in nuclear matter discussed. Quantum statistical approach.

doi: 10.1016/S0375-9474(99)00561-8
Citations: PlumX Metrics


2000RO04      Phys.Rev. C61, 024306 (2000)

G.Ropke, A.Schnell, P.Schuck, U.Lombardo

Isospin Singlet (pn) Pairing and Quartetting Contribution to the Binding Energy of Nuclei

NUCLEAR STRUCTURE Z=4-40; analyzed binding energies; deduced singlet pairing, quartetting contributions. 40Ar, 40Ti; calculated proton and neutron densities. A=40; calculated proton-neutron pairing gap, condensation energy. Local density approximation.

doi: 10.1103/PhysRevC.61.024306
Citations: PlumX Metrics


1999BE37      Phys.Rev. C60, 034004 (1999)

M.Beyer, W.Schadow, C.Kuhrts, G.Ropke

Three-Body Properties in Nuclear Matter at Thermal Equilibrium

doi: 10.1103/PhysRevC.60.034004
Citations: PlumX Metrics


1999RO08      Prog.Part.Nucl.Phys. 42, 53 (1999)

G.Ropke, A.Schnell

Two-Particle Properties in Nuclear Matter at Finite Temperatures

doi: 10.1016/S0146-6410(99)00060-5
Citations: PlumX Metrics


1999SC28      Phys.Rev.Lett. 83, 1926 (1999)

A.Schnell, G.Ropke, P.Schuck

Precritical Pair Fluctuations and Formation of a Pseudogap in Low-Density Nuclear Matter

doi: 10.1103/PhysRevLett.83.1926
Citations: PlumX Metrics


1998DU01      Nucl.Phys. A628, 17 (1998)

J.Dukelsky, G.Ropke, P.Schuck

Generalized Bruckner-Hartree-Fock Theory and Self-Consistent RPA

doi: 10.1016/S0375-9474(97)00606-4
Citations: PlumX Metrics


1998SC02      Phys.Rev. C57, 806 (1998)

A.Schnell, G.Ropke, U.Lombardo, H.-J.Schulze

Elastic Nucleon-Nucleon Cross Section in Nuclear Matter at Finite Temperature

doi: 10.1103/PhysRevC.57.806
Citations: PlumX Metrics


1998SM05      Int.J.Mod.Phys. E7, 515 (1998)

S.A.Smolyansky, A.V.Prozorkevich, S.Schmidt, D.Blaschke, G.Ropke, V.D.Toneev

Relativistic Quantum Kinetic Equation of the Vlasov Type for Systems with Internal Degrees of Freedom

doi: 10.1142/S0218301398000270
Citations: PlumX Metrics


1998VO04      Phys.Lett. 424B, 235 (1998)

M.K.Volkov, E.A.Kuraev, D.Blaschke, G.Ropke, S.Schmidt

Excess Low Energy Photon Pairs from Pion Annihilation at the Chiral Phase Transition

doi: 10.1016/S0370-2693(98)00227-5
Citations: PlumX Metrics


1997BE52      Phys.Rev. C56, 2636 (1997)

M.Beyer, G.Ropke

Deuteron Lifetime in Hot and Dense Nuclear Matter Near Equilibrium

doi: 10.1103/PhysRevC.56.2636
Citations: PlumX Metrics


1997SC06      Phys.Rev. C55, 1917 (1997)

J.Schmelzer, G.Ropke, F.-P.Ludwig

Nuclear Multifragmentation Processes and Nucleation Theory

doi: 10.1103/PhysRevC.55.1917
Citations: PlumX Metrics


1997SC11      Phys.Rev. C55, 3006 (1997)

H.-J.Schulze, A.Schnell, G.Ropke, U.Lombardo

Nucleon-Nucleon Cross Sections in Nuclear Matter

NUCLEAR REACTIONS 1n, 1H(n, n), E < 400 MeV; calculated σ(E); deduced density dependence. Brueckner-Hartree-Fock approximation scheme with Paris potential.

doi: 10.1103/PhysRevC.55.3006
Citations: PlumX Metrics


1996AL09      Phys.Rev. C53, 2181 (1996)

T.Alm, G.Ropke, A.Schnell, N.H.Kwong, H.S.Kohler

Nucleon Spectral Function at Finite Temperature and the Onset of Superfluidity in Nuclear Matter

doi: 10.1103/PhysRevC.53.2181
Citations: PlumX Metrics


1996AL18      Nucl.Phys. A604, 491 (1996)

T.Alm, G.Ropke, A.Sedrakian, F.Weber

3D2 Pairing in Asymmetric Nuclear Matter

doi: 10.1016/0375-9474(96)00153-4
Citations: PlumX Metrics


Back to query form    [Next]