NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of March 21, 2024.

Search: Author = B.Meyer

Found 49 matches.

Back to query form



2024LI09      Phys.Lett. B 848, 138385 (2024)

M.Li, T.M.Sprouse, B.S.Meyer, M.R.Mumpower

Atomic masses with machine learning for the astrophysical r process

NUCLEAR STRUCTURE N<160; analyzed available data; deduced mass deviations between Machine-Learning (ML) approach and HFB-32 model, neutron separation energies, abundances, β-decay rates. Comparison with AME 2020 data.

doi: 10.1016/j.physletb.2023.138385
Citations: PlumX Metrics


2022LI53      Phys.Rev. C 106, 035803 (2022)

M.Li, B.S.Meyer

Dependence of (n, γ)- (γ, n) equilibrium r-process abundances on nuclear physics properties

NUCLEAR STRUCTURE 60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78Cr, 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79Mn, 65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82Fe, 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84Co, 69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88Ni, 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93Cu, 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96Zn, 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101Ga, 78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104Ge, 80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107As, 83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111Se, 85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116Br, 88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119Kr, 91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120Rb, 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123Sr, 97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125Y, 100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126Zr, 103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128Nb, 107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130Mo, 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132Tc, 112,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134Ru; 36,37Cl, 37,38,39Ar, 38,39,40,41K, 39,40,41,42,43,44Ca, 40,41,42,43,44,45Sc, 41,42,43,44,45,46,47,48Ti, 42,43,44,45,46,47,48,49,50V, 44,45,46,47,48,49,50,51,52,53Cr, 46,47,48,49,50,51,52,53,54,55,56Mn, 47,48,49,50,51,52,53,54,55,56,57,58Fe, 49,50,51,52,53,54,55,56,57,58,59,60Co, 51,52,53,54,55,56,57,58,59,60,61,62Ni, 53,54,55,56,57,58,59,60,61,62,63,64Cu, 56,57,58,59,60,61,62,63,64,65,66Zn, 58,59,60,61,62,63,64,65,66,67,68Ga, 60,61,62,63,64,65,66,67,68,69,70Ge, 63,64,65,66,67,68,69,70,71As, 65,66,67,68,69,70,71,72,73Se, 68,69,70,71,72,73,74,75Br, 69,70,71,72,73,74,75,76Kr, 72,73,74,75,76,77Rb, 74,75,76,77,78Sr, 76,77,78,79Y, 78,79,80Zr; calculated chemical-potential offset differences for the reference r-process calculations as functions of time step, temperature, and nuclear mass density for the first set of nuclei from A=60-134, and for the second set of nuclei from A=36-80 for the reference νp-process calculations. A=100-220; calculated abundances as a function of nucleon number for the last moment of (n, γ)-(γ, n) equilibrium and the final frozen-out abundances, ratios of masses and partition functions in Z=50 isotopic chain, S(n), isotopic abundances within an isotope chain, equilibrium abundance distributions, normalized equilibrium abundance curves as functions of Coulomb and asymmetry term coefficients. N=40-120; calculated S(n), abundance distribution including the linear and pairing terms of S(n), equilibrium and full abundance distributions for N=50 and N=82 shell crossings as well as for Z=55, 68 and 70 nuclei, S(n) for two shell transitions; deduced effects of nuclear physics inputs on (n, γ)-(γ, n) equilibrium isotopic abundances, and that isotopic abundances versus neutron number in (n, γ)-(γ, n) equilibrium well approximated as Gaussians. Realistic phenomenological nuclear physics model. Comparison with available experimental and evaluated data in REACLIB V2.2 database.

doi: 10.1103/PhysRevC.106.035803
Citations: PlumX Metrics


2019PE11      Phys.Rev. C 100, 015810 (2019)

A.Petrovici, A.S.Mare, O.Andrei, B.S.Meyer

Impact of 68Se and 72Kr stellar weak interaction rates on rp-process nucleosynthesis and energetics

RADIOACTIVITY 68Se, 72Kr(β+), (EC); calculated stellar weak interaction rates of ground state and low-lying excited states using the beyond-mean-field complex excited Vampir model. Discussed impact on rp-process nucleosynthesis in type-I x-ray bursts and energetics.

doi: 10.1103/PhysRevC.100.015810
Citations: PlumX Metrics


2018TA12      Phys.Rev. C 97, 055801 (2018)

R.Talwar, M.J.Bojazi, P.Mohr, K.Auranen, M.L.Avila, A.D.Ayangeakaa, J.Harker, C.R.Hoffman, C.L.Jiang, S.A.Kuvin, B.S.Meyer, K.E.Rehm, D.Santiago-Gonzalez, J.Sethi, C.Ugalde, J.R.Winkelbauer

Experimental study of 38Ar + α reaction cross sections relevant to the 41Ca abundance in the solar system

NUCLEAR REACTIONS 4He(38Ar, p), (38Ar, n), (38Ar, α'), E=133 MeV; measured energies and yields of reaction products, energy- and angle integrated σ(E) using multisampling ionization chamber (MUSIC) detector at the ATLAS-ANL facility. Comparison with previous experimental values, and with statistical model calculations using TALYS code. 41K(p, α)38Ar, 41Ca(n, α)38Ar, T=0.1-10.0 GK; deduced astrophysical reaction rates, and compared with statistical model calculations, and with REACLIB fits. Discussed relevance to 41Ca abundance in the solar system.

doi: 10.1103/PhysRevC.97.055801
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2302.


2018TE04      Phys.Rev.Lett. 121, 112701 (2018)

M.Tessler, M.Paul, S.Halfon, B.S.Meyer, R.Pardo, R.Purtschert, K.E.Rehm, R.Scott, M.Weigand, L.Weissman, S.Almaraz-Calderon, M.L.Avila, D.Baggenstos, P.Collon, N.Hazenshprung, Y.Kashiv, D.Kijel, A.Kreisel, R.Reifarth, D.Santiago-Gonzalez, A.Shor, I.Silverman, R.Talwar, D.Veltum, R.Vondrasek

Stellar 36, 38Ar(n, γ)37, 39Ar Reactions and Their Effect on Light Neutron-Rich Nuclide Synthesis

NUCLEAR REACTIONS 36,38Ar(n, γ), E ∼ 30 keV; measured reaction products, Eβ, Iβ; deduced thermal σ, Maxwellian average cross sections (MACS). Comparison with available data.

doi: 10.1103/PhysRevLett.121.112701
Citations: PlumX Metrics


2017AR04      Prog.Part.Nucl.Phys. 94, 1 (2017)

A.Arcones, D.W.Bardayan, T.C.Beers, L.A.Bernstein, J.C.Blackmon, B.Messer, B.A.Brown, E.F.Brown, C.R.Brune, A.E.Champagne, A.Chieffi, A.J.Couture, P.Danielewicz, R.Diehl, M.El Eid, J.E.Escher, B.D.Fields, C.Frohlich, F.Herwig, W.R.Hix, C.Iliadis, W.G.Lynch, G.C.McLaughlin, B.S.Meyer, A.Mezzacappa, F.Nunes, B.W.O'Shea, M.Prakash, B.Pritychenko, S.Reddy, E.Rehm, G.Rogachev, R.E.Rutledge, H.Schatz, M.S.Smith, I.H.Stairs, A.W.Steiner, T.E.Strohmayer, F.X.Timmes, D.M.Townsley, M.Wiescher, R.G.T.Zegers, M.Zingale

White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

doi: 10.1016/j.ppnp.2016.12.003
Citations: PlumX Metrics


2017CL05      Geochim.Cosmochim.Act. 221, 47 (2017)

D.D.Clayton, B.S.Meyer

Graphite grain-size spectrum and molecules from core-collapse supernovae

ATOMIC MASSES C, O; calculated abundances of carbon atomic complexes that emerge from the C + O cores of core-collapse supernovae.

doi: 10.1016/j.gca.2017.06.027
Citations: PlumX Metrics


2017SI11      J.Phys.(London) G44, 064006 (2017)

A.Simon, M.Beard, B.S.Meyer, B.Roach

Impact of the α optical model potential on the γ-process nucleosynthesis

NUCLEAR REACTIONS 156,158,160Dy, 152,154Er, 168Yb(α, γ), E<5 GK; 106Cd, 112Sn, 144Sm, 151Eu, 168Yb, 197Au(α, n), E(cm)<24 MeV; calculated σ, astrophysical reaction rates. NON-SMOKER, TALYS nuclear model codes, comparison with available data.

doi: 10.1088/1361-6471/aa6bb4
Citations: PlumX Metrics


2016TV01      Phys.Rev. C 94, 025804 (2016)

G.M.Tveten, A.Spyrou, R.Schwengner, F.Naqvi, A.C.Larsen, T.K.Eriksen, F.L.Bello Garrote, L.A.Bernstein, D.L.Bleuel, L.Crespo Campo, M.Guttormsen, F.Giacoppo, A.Gorgen, T.W.Hagen, K.Hadynska-Klek, M.Klintefjord, B.S.Meyer, H.T.Nyhus, T.Renstrom, S.J.Rose, E.Sahin, S.Siem, T.G.Tornyi

Completing the nuclear reaction puzzle of the nucleosynthesis of 92Mo

NUCLEAR REACTIONS 92Mo(p, p'), E=16.5 MeV; measured Ep, Ip, Eγ, Iγ pγ-coin, angular distributions using SiRi silicon ΔE-E telescopes for protons and CACTUS scintillator detector array for γ rays at Oslo Cyclotron Laboratory; deduced nuclear level density (NLD) and γ-strength function (γSF) of 92Mo. 91Nb(p, γ)92Mo, T9=1.8-3.5; deduced astrophysical reaction rates using TALYS 1.6 code and NLD and γSF input from present experiment; discussed puzzle of the nucleosynthesis of 92Mo in the context of p process. Comparison with previous experimental results from 92Mo(γ, γ') and 92,94,95,96Mo(γ, n) reactions, and shell model calculations.

doi: 10.1103/PhysRevC.94.025804
Citations: PlumX Metrics


2015LO04      Phys.Rev.Lett. 114, 192501 (2015)

G.Lorusso, S.Nishimura, Z.Y.Xu, A.Jungclaus, Y.Shimizu, G.S.Simpson, P.-A.Soderstrom, H.Watanabe, F.Browne, P.Doornenbal, G.Gey, H.S.Jung, B.Meyer, T.Sumikama, J.Taprogge, Zs.Vajta, J.Wu, H.Baba, G.Benzoni, K.Y.Chae, F.C.L.Crespi, N.Fukuda, R.Gernhauser, N.Inabe, T.Isobe, T.Kajino, D.Kameda, G.D.Kim, Y.-K.Kim, I.Kojouharov, F.G.Kondev, T.Kubo, N.Kurz, Y.K.Kwon, G.J.Lane, Z.Li, A.Montaner-Piza, K.Moschner, F.Naqvi, M.Niikura, H.Nishibata, A.Odahara, R.Orlandi, Z.Patel, Zs.Podolyak, H.Sakurai, H.Schaffner, P.Schury, S.Shibagaki, K.Steiger, H.Suzuki, H.Takeda, A.Wendt, A.Yagi, K.Yoshinaga

β-Decay Half-Lives of 110 Neutron-Rich Nuclei across the N=82 Shell Gap: Implications for the Mechanism and Universality of the Astrophysical r Process

RADIOACTIVITY 134,135,136,137,138,139Sn, 128,129,130,131,132,133,134,135,136,137In, 126,127,128,129,130,131,132,133,134Cd, 124,125,126,127,128,129,130,131,132Ag, 121,122,123,124,125,126,127,128,129Pd, 118,119,120,121,122,123,124,125,126,127Rh, 116,117,118,119,120,121,122,123,124Ru, 112,113,114,115,116,117,118,119,120,121Tc, 109,110,111,112,113,114,115,116,117,118Mo, 107,108,109,110,111,112,113,114,115Nb, 106,107,108,109,110,111,112Zr, 104,105,106,107,108,109Y, 103,104,105,106Sr, 102,103Rb(β-) [from Be(238U, X), E=345 MeV/nucleon]; measured decay products, Eγ, Iγ; deduced T1/2; Calculated r-process abundances. Comparison with available data.

doi: 10.1103/PhysRevLett.114.192501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2014BO04      Phys.Rev. C 89, 025807 (2014)

M.J.Bojazi, B.S.Meyer

Explosive nucleosynthesis of 15Na in a massive-star model

NUCLEAR REACTIONS 14N(α, γ)18F, 18F(n, α)15N, 18O(p, α)15N, E at stellar temperatures; calculated mass fraction of 15N in explosive nucleosynthesis through different pathways in helium-rich outer layers of massive stars over all the 707 zones available in the presupernova stars including neutrino-nucleus interactions, time evolution of mass fractions of neutrons, protons, 14,15N, 18O and 18F; discussed competition between the production and destruction of 15N, latter through 15N(p, α)12C and 15N(α, γ)19F reactions. Comparison of presupernova and postsupernova values, and with previous calculations A simple but realistic model of shock passage using open-source, freely available codes.

doi: 10.1103/PhysRevC.89.025807
Citations: PlumX Metrics


2014WU06      Phys.Rev. C 90, 011601 (2014), Erratum Phys.Rev. C 90, 019903 (2014)

S.Wuenschel, H.Zheng, K.Hagel, B.Meyer, M.Barbui, E.J.Kim, G.Ropke, J.B.Natowitz

Nucleation and cluster formation in low-density nucleonic matter: A mechanism for ternary fission

NUCLEAR REACTIONS 241Pu(n, F), E=thermal; calculated ternary fission yields as a function of mass and charge of products of A<40. Nucleation and cluster formation in the low-density neck between the two large fragments. Nuclear statistical equilibrium (NSE) calculations. Comparison with experimental data. 242Pu(SF); plotted experimental relative yields of ternary cluster isotopes.

doi: 10.1103/PhysRevC.90.011601
Citations: PlumX Metrics


2013FA04      J.Phys.:Conf.Ser. 445, 012025 (2013)

M.Famiano, R.N.Boyd, T.Kajino, B.Meyer, Y.Motizuki, I.Roederer

Implementing the r-process in metal-poor stars via black hole collapse and relevance to the light element enhancement

doi: 10.1088/1742-6596/445/1/012025
Citations: PlumX Metrics


2013QU01      Phys.Rev. C 88, 011603 (2013)

S.J.Quinn, A.Spyrou, A.Simon, A.Battaglia, M.Couder, P.A.DeYoung, A.C.Dombos, X.Fang, J.Gorres, A.Kontos, Q.Li, S.Lyons, B.S.Meyer, G.F.Peaslee, D.Robertson, K.Smith, M.K.Smith, E.Stech, W.P.Tan, X.D.Tang, M.Wiescher

Probing the production mechanism of the light p-process nuclei

NUCLEAR REACTIONS 74Ge(p, γ)75As, E=1.6-4.2 MeV; measured Eγ, Iγ, σ(E) using the NSCL SuN detector at Notre Dame facility; deduced astrophysical S(E) factors, reaction rates at T9=0.10-10.0, cumulative mass fraction of 74Se in a Type II Supernova model. Comparison with previous experimental data, and with theoretical predictions using NON-SMOKER and TALYS nuclear reaction codes.

doi: 10.1103/PhysRevC.88.011603
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2046.


2013SP04      Phys.Rev. C 88, 045802 (2013)

A.Spyrou, S.J.Quinn, A.Simon, T.Rauscher, A.Battaglia, A.Best, B.Bucher, M.Couder, P.A.DeYoung, A.C.Dombos, X.Fang, J.Gorres, A.Kontos, Q.Li, L.Y.Lin, A.Long, S.Lyons, B.S.Meyer, A.Roberts, D.Robertson, K.Smith, M.K.Smith, E.Stech, B.Stefanek, W.P.Tan, X.D.Tang, M.Wiescher

Measurement of the 90, 92Zr(p, γ)91, 93Nb reactions for the nucleosynthesis of elements near A=90

NUCLEAR REACTIONS 90,92Zr(p, γ)91Nb/93Nb, E=2.0-5.0 MeV; measured Eγ, Iγ, σ(E) using NSCL SuN detector at Notre Dame accelerator facility; deduced astrophysical S factors, reaction rates, sensitivity of reaction to widths in Hauser-Feshbach model. Comparison with standard NON-SMOKER model, and two TALYS calculations. Relevance to synthesis and abundances of light p nuclei.

doi: 10.1103/PhysRevC.88.045802
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2065.


2007NI12      667, L159 (2007)

H.Ning, Y.-Z.Qian, B.S.Meyer

r-Process Nucleosynthesis in Shocked Surface Layers of O-Ne-Mg Cores

doi: 10.1086/522372
Citations: PlumX Metrics


2006HI17      Nucl.Phys. A777, 188 (2006)

W.R.Hix, B.S.Meyer

Thermonuclear kinetics in astrophysics

doi: 10.1016/j.nuclphysa.2004.10.009
Citations: PlumX Metrics


2004JO20      Astrophys.J. 617, L131 (2004)

G.C.Jordan IV, B.S.Meyer

Nucleosynthesis in fast expansions of high-entropy, proton-rich matter

doi: 10.1086/427233
Citations: PlumX Metrics


2003JO20      Phys.Rev. C 68, 065801 (2003)

G.C.Jordan IV, S.S.Gupta, B.S.Meyer

Nuclear reactions important in α-rich freeze-outs

NUCLEAR REACTIONS 57Ni(n, p), 55Co, 59Cu(p, γ), 59Cu(p, α), E=low; calculated astrophysical reactions rates. Sensitivity of supernova observables to nuclear reaction rates discussed.

doi: 10.1103/PhysRevC.68.065801
Citations: PlumX Metrics


2003ME19      Nucl.Phys. A719, 13c (2003)

B.S.Meyer

Neutrinos, supernovae, molybdenum, and extinct 92Nb

doi: 10.1016/S0375-9474(03)00952-7
Citations: PlumX Metrics


2002ME23      Phys.Rev.Lett. 89, 231101 (2002)

B.S.Meyer

r-Process Nucleosynthesis without Excess Neutrons

doi: 10.1103/PhysRevLett.89.231101
Citations: PlumX Metrics


2001GU21      Phys.Rev. C64, 025805 (2001)

S.S.Gupta, B.S.Meyer

Internal Equilibration of a Nucleus with Metastable States: 26Al as an example

NUCLEAR STRUCTURE 26Al; analyzed equilibration of ground, metastable states in astrophysical environment. Multistep transitions, application to nucleosynthesis calculations discussed.

doi: 10.1103/PhysRevC.64.025805
Citations: PlumX Metrics


2001TH22      Astrophys.J. 562, 887 (2001)

T.A.Thompson, A.Burrows, B.S.Meyer

The Physics of Proto-Neutron Star Winds: Implications for r-Process Nucleosynthesis

doi: 10.1086/323861
Citations: PlumX Metrics


2000ME22      Phys.Rep. 333-334, 1 (2000)

B.S.Meyer, J.W.Truran

Nucleocosmochronology

doi: 10.1016/S0370-1573(00)00012-0
Citations: PlumX Metrics


2000TH09      Astrophys.J. 533, 998 (2000)

L.-S.The, M.F.El Eid, B.S.Meyer

A New Study of s-Process Nucleosynthesis in Massive Stars

doi: 10.1086/308677
Citations: PlumX Metrics


1998ME25      Phys.Rev. C58, 3696 (1998)

B.S.Meyer, G.C.McLaughlin, G.M.Fuller

Neutrino Capture and r-Process Nucleosynthesis

doi: 10.1103/PhysRevC.58.3696
Citations: PlumX Metrics


1998TH07      Astrophys.J. 504, 500 (1998)

L.-S.The, D.D.Clayton, L.Jin, B.S.Meyer

Nuclear Reactions Governing the Nucleosynthesis of 44Ti

NUCLEAR REACTIONS 44Ti, 36Ar, 40Ca(α, p), 8Be, 40Ca, 44Ti, 12C, 36Ar(α, γ), 45V, 57Ni, 58Cu, 44Ti, 57Co(p, γ), 57Co(p, n), 57Ni(n, γ), 54Fe(α, n), E not given; analyzed reaction rates influence on 44Ti nucleosynthesis.

doi: 10.1086/306057
Citations: PlumX Metrics


1997CL04      Nucl.Phys. A621, 391c (1997)

D.D.Clayton, T.D.Krishnan, B.S.Meyer

Origin of 48Ca

NUCLEAR STRUCTURE 48Ca; analyzed reaction rates variation; deduced 48Ca survival dependence on expansion type in nucleosynthesis.

doi: 10.1016/S0375-9474(97)00277-7
Citations: PlumX Metrics


1997JI04      Nucl.Phys. A621, 319c (1997)

L.Jin, B.S.Meyer, L.-S.The, D.D.Clayton

Nuclear Reaction Rates Governing the Nucleosynthesis of 44Ti

NUCLEAR STRUCTURE 44Ti; analyzed, surveyed nuclear reaction rates; deduced 44Ti production dependence on certain reaction rates, astrophysical implication. Large reaction network.

doi: 10.1016/S0375-9474(97)00263-7
Citations: PlumX Metrics


1997ME09      Nucl.Phys. A621, 409c (1997)

B.S.Meyer, J.S.Brown

r-Process Surveys

NUCLEAR STRUCTURE A=195; calculated abundance peak synthesis; deduced r-process conditions constraints role.

doi: 10.1016/S0375-9474(97)00281-9
Citations: PlumX Metrics


1997ME23      Astrophys.J.Suppl.Ser. 112, 199 (1997)

B.S.Meyer, J.S.Brown

Survey of r-Process Models

doi: 10.1086/313032
Citations: PlumX Metrics


1997SU19      Phys.Rev.Lett. 79, 1809 (1997)

R.Surman, J.Engel, J.R.Bennett, B.S.Meyer

Source of the Rare-Earth Element Peak in r-Process Nucleosynthesis

NUCLEAR STRUCTURE A=150-175; analyzed r-process abundance distribution; deduced rare-earth element peak associated features in nucleosynthesis.

doi: 10.1103/PhysRevLett.79.1809
Citations: PlumX Metrics


1996HO29      Nucl.Instrum.Methods Phys.Res. A380, 117 (1996)

D.M.Hofmann, W.Stadler, P.Christmann, B.K.Meyer

Defects in CdTe and Cd(1-x)Zn(x)Te

doi: 10.1016/S0168-9002(96)00287-2
Citations: PlumX Metrics


1996SI14      Nucl.Instrum.Methods Phys.Res. A369, 340 (1996)

B.R.S.Simpson, B.R.Meyer

Activity Measurement of 204Tl by Direct Liquid Scintillation Method

RADIOACTIVITY 204Tl(β-), (EC); measured activity. 4π (X, e)-X(K) coincidence counting.

doi: 10.1016/S0168-9002(96)80005-2
Citations: PlumX Metrics


1994ME26      Ann.Rev.Astron.Astrophys. 32, 153 (1994)

B.S.Meyer

The r-, s-, and p-Processes in Nucleosynthesis

doi: 10.1146/annurev.astro.32.1.153
Citations: PlumX Metrics


1994SI21      Nucl.Instrum.Methods Phys.Res. A339, 14 (1994)

B.R.S.Simpson, B.R.Meyer

Direct Activity Measurement of Pure Beta-Emitting Radionuclides by the TDCR Efficiency Calculation Technique

RADIOACTIVITY 3H(β-); 63Ni(β-); 14C(β-); 99Tc(β-); measured activity. Triple-to-double coincidence ratio efficiency calculation technique.

doi: 10.1016/0168-9002(94)91771-X
Citations: PlumX Metrics


1994SI26      Appl.Radiat.Isot. 45, 669 (1994)

B.R.S.Simpson, B.R.Meyer

Standardization and Half-Life of 201Tl by the 4π(x, e)-γ Coincidence Method with Liquid Scintillation Counting in the 4π-Channel

RADIOACTIVITY 201Tl(EC); measured (X-ray)γ-, (electron)γ-coin; deduced source standardization. 201Tl deduced T1/2. Liquid scintillation counting in 4π channel.

doi: 10.1016/0969-8043(94)90245-3
Citations: PlumX Metrics


1994WO06      Astrophys.J. 433, 229 (1994)

S.E.Woosley, J.R.Wilson, G.J.Mathews, R.D.Hoffman, B.S.Meyer

The r-Process and Neutrino-Heated Supernova Ejecta

doi: 10.1086/174638
Citations: PlumX Metrics


1993BO13      Phys.Rev. C47, 2369 (1993)

R.N.Boyd, C.A.Mitchell, B.S.Meyer

Reaction Rate for Destruction of 7Li and Primordial Nucleosynthesis

NUCLEAR REACTIONS 7Li(d, X), E ≈ resonance; calculated target destruction rate; deduced 7Li abundance prediction implications.

doi: 10.1103/PhysRevC.47.2369
Citations: PlumX Metrics


1990AL45      Phys.Rev.Lett. 64, 2607 (1990)

C.R.Alcock, D.S.Dearborn, G.M.Fuller, G.J.Mathews, B.S.Meyer

Late-Time Dissipation of Primordial Baryon-Number Fluctuations and Nucleosynthesis

doi: 10.1103/PhysRevLett.64.2607
Citations: PlumX Metrics


1990ME05      Appl.Radiat.Isot. 41, 375 (1990)

B.R.Meyer, B.R.S.Simpson

A Direct Method for 55Fe Activity Measurement

RADIOACTIVITY 55Fe; measured activity. Direct method, theoretical counting efficiency, liquid scintillators.

doi: 10.1016/0883-2889(90)90146-8
Citations: PlumX Metrics


1990ST03      Appl.Radiat.Isot. 41, 315 (1990)

G.F.Steyn, S.J.Mills, F.M.Nortier, B.R.S.Simpson, B.R.Meyer

Production of 52Fe via Proton-Induced Reactions on Manganese and Nickel

NUCLEAR REACTIONS, ICPND 55Mn(p, 4n), E=40-200 MeV; 27Al(p, X)22Na, E=75-200 MeV; Ni(p, X)52Fe, E=45-200 MeV; measured residual production σ(E).

doi: 10.1016/0883-2889(90)90197-O
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetA0497.


1989ME06      Phys.Rev. C39, 1876 (1989)

B.S.Meyer, W.M.Howard, G.J.Mathews, K.Takahashi, P.Moller, G.A.Leander

Beta-Delayed Fission and Neutron Emission Calculations for the Actinide Cosmochronometers

NUCLEAR STRUCTURE 234,244,252Fr, 246,248,252,264Ac, 250,252,254,260,270Pa, 252,254,276Np, 251,258,264,277Am; calculated Gamow-Teller strength functions; deduced beta-delayed fission, beta delayed neutron emission, galactic age uncertainities. Actinide cosmochronometers.

doi: 10.1103/PhysRevC.39.1876
Citations: PlumX Metrics


1989SI19      Appl.Radiat.Isot. 40, 819 (1989)

B.R.S.Simpson, B.R.Meyer

The Half-Life of 125I

RADIOACTIVITY 125I(EC); measured T1/2. Linearized weighted least square data analysis, direct activity measurement.

doi: 10.1016/0883-2889(89)90103-2
Citations: PlumX Metrics


1974DE09      Nucl.Phys. A225, 317 (1974); Priv.Comm. (March 1974)

F.W.N.de Boer, P.F.A.Goudsmit, P.Koldewijn, B.J.Meyer

Decay Properties of Three 166Lu Isomers and the Decay of 166Hf

RADIOACTIVITY 166Lu, 166Hf [from 169Tm(3He, 6n), 170Yb(p, 5n)]; measured Eγ, Iγ, I(ce), γγ-coin, Eγ-coin, Xγ delay. 166Yb, 166Lu deduced levels, T1/2, Q-value, J, log ft, π, ICC multipolarities, Ge(Li), Si(Li), NaI(Tl), plastic detectors. Enriched, natural targets.

doi: 10.1016/0375-9474(74)90544-2
Citations: PlumX Metrics


1973DE04      Priv.Comm. (1973)

F.W.N.de Boer, P.F.A.Goudsmit, B.J.Meyer


1973SO03      Phys.Rev. C7, 1564 (1973)

H.W.Sobel, A.A.Hruschka, W.R.Kropp, J.Lathrop, F.Reines, M.F.Crouch, B.S.Meyer, J.P.F.Sellschop

High-Energy Gamma Rays from Spontaneous Fission of 238U

RADIOACTIVITY, Fission 238U(SF); measured γ-spectrum. Deduced absolute photon yield.

doi: 10.1103/PhysRevC.7.1564
Citations: PlumX Metrics


1973ST19      Int.J.Appl.Radiat.Isotop. 24, 369 (1973)

J.Steyn, B.R.Meyer

Production of 67Ga by Deuteron Bombardment of Natural Zinc

NUCLEAR REACTIONS Zn(d, xn), E=0-16 MeV; measured σ(E). 66,67Ga deduced production rates.

doi: 10.1016/0020-708X(73)90015-X
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetR0040.


1969ME17      Priv.Comm. (1969)

B.J.Meyer, J.Konijn


Back to query form


Note: The following list of authors and aliases matches the search parameter B.Meyer: , B.J.MEYER, B.K.MEYER, B.R.MEYER, B.S.MEYER