Another interesting case of ICC measurement: the 88-keV, M4 transition in ^{127m}Te

TEXAS A&M PROGRAM TO MEASURE ICC N. NICA

Internal Conversion Coefficients (ICC):

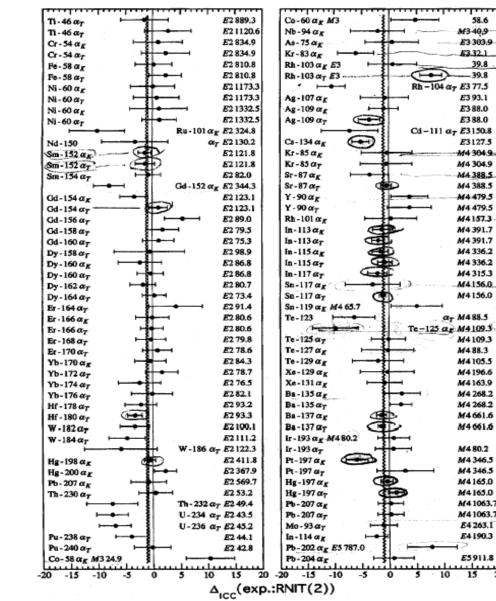
- Big impact on quality of nuclear science
- Central for USNDP and other nuclear data programs
- Intensely studied by theory and experiment
- Important result: hole calculation now standard
- Is the series of measurements complete?
- Are there other critical cases to measure?
- Overview of the scope and completeness of the method

2002RA45 survey ICC's theories and measurements

• Theory: RHFS and RDF comparison

Exchange interaction, Finite size of nucleus, Hole treatment

• Experiment:


100 E2, M3, E3, M4, E5 ICC values, 0.5%-6% precision, very few <1% precision!

Conclusions, Δ(exp:theory)%:
No hole: +0.19(26)% BEST!
(bound and continuum states - SCF of neutral atom)
Hole-SCF: -0.94(24)%
(continuum - SCF of ion + hole (full relaxation of ion orbitals))
Hole-FO: -1.18(24)%
(continuum - ion field from bound wave functions of
neutral atom
(no relaxation of ion

orbitals))

PHYSICAL ARGUMENTK-shell filling time vs. time to leave atom $\sim 10^{-15} - 10^{-17} s \gg \sim 10^{-18} s$

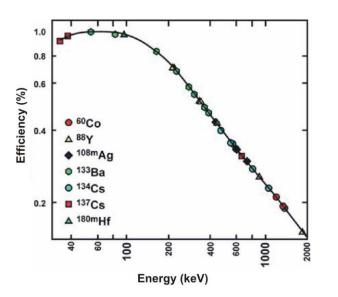
2002Ra45: 100 $\alpha_{K}(exp)$ cases compared with 'hole FO' calculations

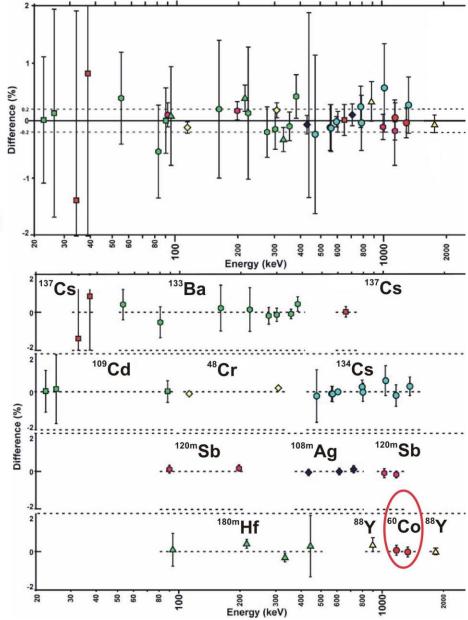
Texas A&M precision ICC measurements:

• KX to γ rays ratio method

$$\alpha_{K}\omega_{K} = \frac{N_{K}}{N_{\gamma}} \cdot \frac{\varepsilon_{\gamma}}{\varepsilon_{K}}$$

• N_K , N_γ measured from only one K-shell converted transition • ω_K from 1999SCZX (compilation and fit)


- Very precise detection efficiency for ORTEC γ-X 280-cm³ coaxial HPGe at standard distance of 151 mm:
 - 0.2%, 50-1400 keV (2002HA61, 2003HE28)
 - 0.4%, 1.4-3.5 MeV (2004HE34)
 - 1%, 10-50 keV (KX rays domain)


DETECTOR EFFICIENCY 50 keV < E_{γ} < 1.4 MeV

Coaxial 280-cc n-type Ge detector:

- Measured absolute efficiency (⁶⁰Co source from PTB with activity known to + 0.1%)
- Measured relative efficiency (9 sources)
- •Calculated efficiencies with Monte Carlo (Integrated Tiger Series - CYLTRAN code)

0.2% uncertainty for the interval 50-1400 keV

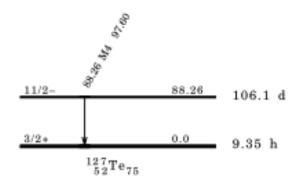
KX to γ rays ratio method

- \circ Sources for n_{th} activation
 - Small selfabsorption (< 0.1%)</p>
 - Dead time (< 5%)</p>
 - Statistics (> 10⁶ for γ or x
 - High spectrum purity
 - Minimize activation time (0.5 h)
- **o Impurity analysis** *essentially based on ENSDF*
 - Trace and correct impurity to 0.01% level
 - Use decay-curve analysis
 - Especially important for the K X-ray region

• Voigt-shape (Lorentzian) correction for X-rays

Done by simulation spectra, analyzed as the real spectra

• Coincidence summing correction

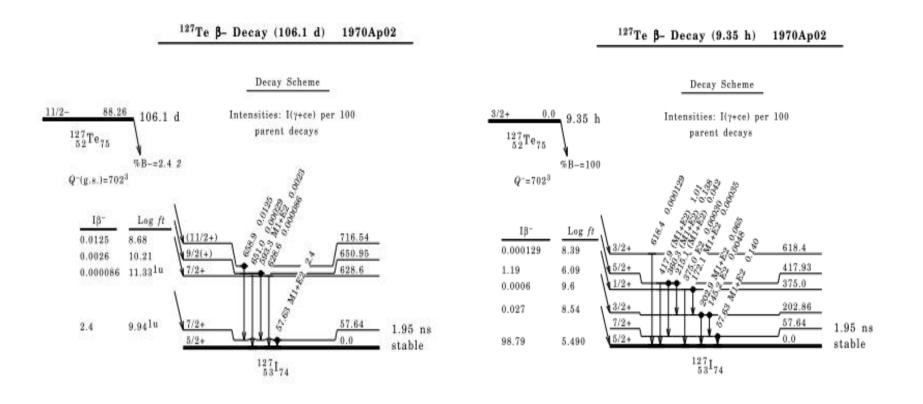

^{127m}Te 88.3 keV, M4 transition

- α(K)exp = 484 23 (1977So06), %unc=4.8
- $\alpha(K)_{hole_FO} = 485, \alpha(K)_{no_hole} = 468$

¹²⁷Te IT Decay (106.1 d) 1970Ap02

Decay Scheme

Intensity: I(γ+ce) per 100 parent decays %IT=97.6 2



^{127m}Te 88.3 keV, M4 transition - α_{K} measurement

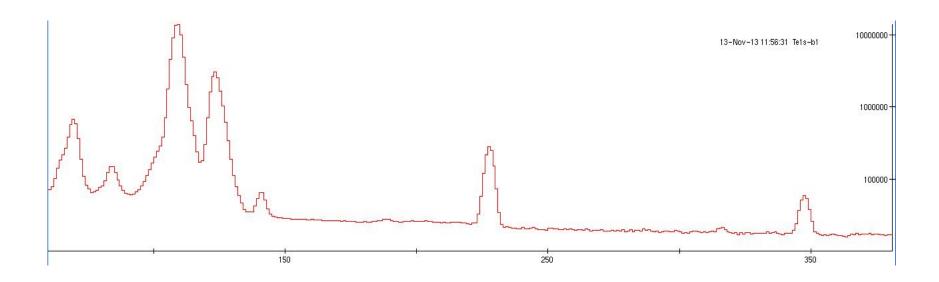
- ¹²⁶Te 98%+ enriched (from 19% natural abundance)
- Metal powder of 25(5) microns granularity
- Grinded at micron size
- Samples: 1.3 mg, disk of 1 cm diameter x 2.7-µm thick
- Sample consisted in three 1x1 inch, 1 mil-thick mylar foils stuck together; in middle one a disc of 1 cm diameter was cut and removed, and the hole filled with Te powder; then sealed with the other two mylar foils
- Neutron activation at Triga reactor @ TAMU,
 - $\Phi = 7.5 \text{ x } 10^{12} \text{ n/(cm}^2 \text{s})$
 - $\alpha_{th} = 0.135(23)$ b
 - Sample activated 24 h, then cooled down for 2 months
 - Measured for 3 weeks
- Measured with HPGe detector at 151 mm distance for three weeks

^{127m}Te Decay Modes

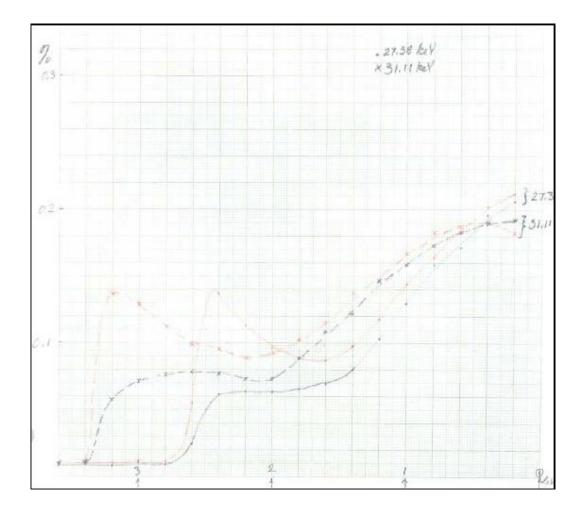
- 88.3-keV meta-stable state: IT, β -
- ground state: β⁻

^{127m}Te 88.3 keV, M4 transition - $\alpha_{\rm K}$ measurement

• Major difficulty:

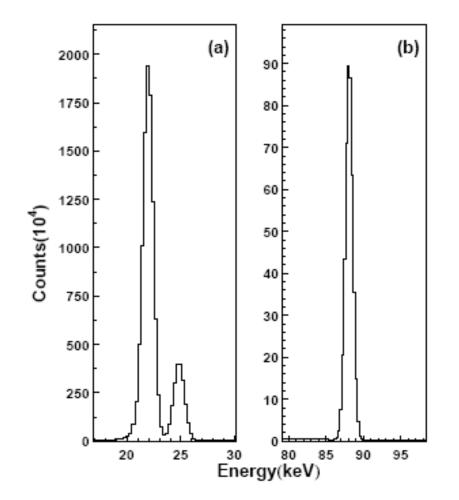

- Both the dummy mylar sample and the ¹²⁶Te sample were found rolled after activation.
- The dummy was succesfully unrolled and fixed in between two thin mylar foils
- However the ¹²⁶Te sample was getting friable and broke when unrolled
- The partially unrolled sample was squeezed in between two mylar foils presumably with small loss of substance but with roughly a layer twice as thick as the initial one
- A increase by factor of 1.5 for the relative attenuation of I(TeKx)/I(88γ) was adopted

.


• One should normally repeat the run and get unspoiled source

^{127m}Te 88.3 keV, M4 transition - α_K measurement

- Second major difficulty: scattering affecting TeKx region
 - Rough estimate 4-5% effect
 - Correction: by simulation (Cyltran) and measurement (¹⁰⁹Cd)



^{127m}Te 88.3 keV, M4 transition - αK measurement Cytran simulation of scattering

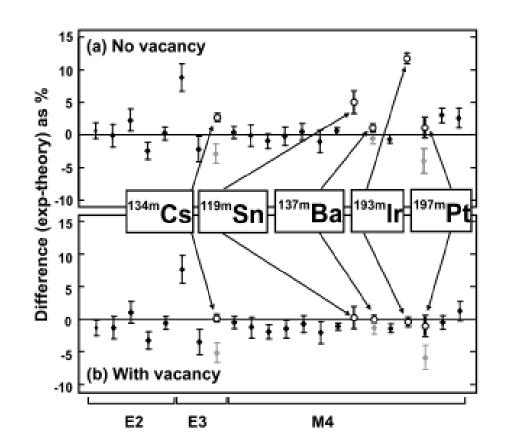
¹⁰⁹Cd Efficiency Calibration

22.6-keV AgKx & 88.0-keV E3 y regions

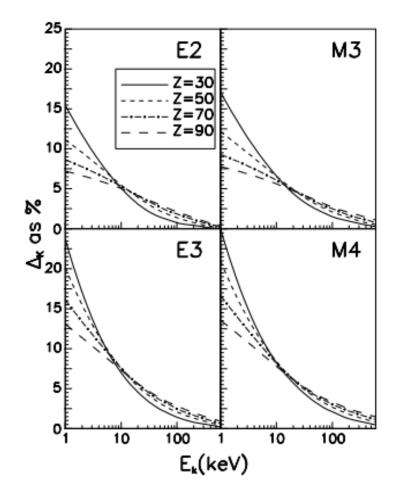
127mTe 88.3 keV, M4 transition - αK measurement Impurity analysis

Impurity	Contribution	to TeKx rays	Contribution	tion to 88.3-keV γ		
^{127m} Te β -	3.5%	0.6%				
^{125m} Te IT	2.63%	0.06%				
^{129m} Te β ⁻ ,IT	0.309%	0.012%				
¹²⁷ Te β ⁻	0.226%	0.015%				
¹²⁹ Te β ⁻	0.12%	0.05%				
^{123m} Te IT	0.104%	0.003%	0.081%	0.003%		
¹³¹ Ιβ ⁻	0.0374%	0.0009%				
¹²¹ Te e+ β +	0.0171%	0.0012%				
¹²⁴ Sb β-	0.0144%	0.0003%				
^{110m} Ag β ⁻	0.000366%	0.000011%				
^{110m} Ag IT	0.000121%	0.00003%				
Total	7.0%	0.6%	0.081%	0.003%		

^{127m}Te 88.3 keV, M4 transition - αK measurement


Result (still preliminary) !

• $\alpha_{\rm K}(\exp) = 489 \ 7 \ (1.4\%)$ • $\alpha_{\rm K}(\operatorname{hole}, \operatorname{FO}) = 485; \ \alpha_{\rm K}(\operatorname{no-hole}) = 468$


Overview of the scope and completeness of the method

There is no criterion to reach the scope of comparison between ICC theories "with hole" and "no hole" except for measuring precisely as many relevant cases as practically

possible

The difference $\Delta_{\rm K}$ between $\alpha_{\rm K}$ ('hole') and $\alpha_{\rm K}$ ('no hole') (relative to $\alpha_{\rm K}$ ('hole')) as function of kinetic energy of converted electron ${\rm E}_{\rm K}$

Systematic search for relevant $\alpha_K(exp)$ cases by I_{Kx}/I_{γ} ratio method

- Used NuDat to scan for all α_K cases of transitions having $\Delta_K > 5\%$
- Found 14 (E3), 9 (M3), 2 (E4), 8 (M4) in total 33 such cases
 (Δ_K = 5% - 13%)
- Excluded 25 because the Kx rays from the IT transition can not be separated
- There are 8 favorable cases (provided one can find a suitable reaction to populate them)
 - 3 cases of $\Delta_{\rm K}$ = 7-8%
 - 5 cases of $\Delta_{\rm K}$ = 5-7%

NuDat search: E3 $\alpha_{\rm K}$ cases of transitions having $\Delta_{\rm K} > 5\%$

Nucleu s	E _{level} (keV)	Jπ	T _{1/2}	Ε _γ (keV)	I _v	γ mult.	γ conv. coeff.			
103RH	39.753 6	7/2+	56.114 m 9	39.755 6	100	E3	1403 20	135.1	127.3	5.8%
113AG	43.5 1	7/2+	68.7 s <i>16</i>	43.6 2	100	E3	1047	92.8	87.6	5.6%
115AG	41.16 <i>10</i>	7/2+	18.0 s 7	41.1 2	100	E3	1.40E3 <i>5</i>	102.0	95.8	6.1%
116AG	47.90 <i>10</i>	(3+)	20 s 1	47.9 1		E3	598 11	76.5	72.8	4.8%
117AG	28.6 2	(7/2+)	5.34 s <i>5</i>	28.6 2	100	E3	1.15E4 6	60.7	52.7	13.2%
131PR	152.4 3	(11/2-)	5.73 s 20	64.8 3	100	E3	305	14.23	13.50	5.1%
158HO	67.199 <i>10</i>	2-	28 m 2	67.200 <i>10</i>	100	E3	483	3.85	3.58	7.0%
160HO	59.98 3	2-	5.02 h <i>5</i>	59.98 3	100	E3	940	1.91	1.71	10.5%
171LU	71.13 8	1/2-	79 s 2	71.10 9	100	E3	472	1.585	1.453	8.3%
187AU	120.33 14	9/2(-)	2.3 s 1	101.0 2	100	E3	120.4 22	0.925	0.874	5.5%
192AU	135.41 25	(5)+	29 ms	103.8 3		E3	103.3 23	0.977	0.926	5.2%
196AU	84.656 <i>20</i>	5+	8.1 s 2	84.66 2	100	E3	327	0.290	0.260	10.3%
195TL	482.63 17	9/2-	3.6 s 4	98.97 <i>12</i>	100	E3	157.5	0.561	0.524	6.6%
196BI	271 5	(10-)	240 s 3	102.0 <i>20</i>	100	(E3)	155	0.388	0.361	7.0%

NuDat search: M3 $\alpha_{\rm K}$ cases of transitions having $\Delta_{\rm K} > 5\%$

Nucleus	E _{level} (keV)	Jπ	T _{1/2}	E _γ (keV)	Ι _γ	γ mult.	γ conv. coeff.			
58CO	24.95 6	5+	9.10 h <i>9</i>	24.889 21	100	М3	2.52E3	1840	1754	4.7%
94NB	40.892 12	3+	6.263 m <i>4</i>	40.90 5	100	M3	1366	766	731	4.6%
96TC	34.23 4	4+	51.5 m <i>10</i>	34.20 5	100	M3	3.79E3	1694	1595	5.8%
100RH	107.60 <i>20</i>	(5+)	4.6 m 2	32.7 2	0.11	[M3]	5.76E3 20	2070	1930	6.8%
104RH	128.9679 <i>5</i>	5+	4.34 m 3	31.866 2	0.0279 23	М3	6846	2236	2080	7.0%
104RH 130I	128.9679 <i>5</i> 39.952 <i>1</i>	<mark>5+</mark> 2+	<mark>4.34 m 3</mark> 8.84 m 6	31.866 2 39.954 2	0.0279 23 100	<u>М3</u> М3	6846 4.94E3	<mark>2236</mark> 1154	2080 1068	<mark>7.0%</mark> 7.5%
1301	39.952 <i>1</i>	2+	8.84 m 6	39.954 2	100	М3	4.94E3	1154	1068	7.5%

NuDat search: E4 and M4 $\alpha_{\rm K}$ cases of transitions having $\Delta_{\rm K} > 5\%$

Nucleus	E _{level} (keV)	Jπ	T _{1/2}	Ε _γ (keV)	Ι _γ	γ mult.	γ conv. coeff.			
148PM	137.9 3	5-,6-	41.29 d <i>11</i>	62.2 5		E4	1.23E4	30.8	28.7	6.8%
179W	221.91 3	1/2-	6.40 m 7	101.6 5	0.0088 <i>8</i>	[E4]	1.32E3 5	4.09	3.88	5.1%

93NB	30.77 <i>2</i>	1/2-	16.12 y <i>12</i>	30.77 <i>2</i>	100	M4	1.693E5	26000	23900	8.1%
95TC	38.91 <i>4</i>	1/2-	61 d 2	38.9 1	100	M4	5.17E4 <i>11</i>	11580	10840	6.4%
108AG	109.466 7	6+	438 y <i>9</i>	30.332 8	100	M4	4.31E5	11130	9830	11.7%
184RE	188.0463 17	8(+)	169 d <i>8</i>	83.3067 8	100 4	M4	1.346E4	254	235	7.5%
198AU	811.7 <i>15</i>	(12-)	2.272 d 16	115.2 <i>15</i>	100	(M4)	2.49E3 22	185	176	4.9%
193HG	140.76 5	13/2(+)	11.8 h 2	101.25 <i>4</i>	100	M4	6.06E3	170.4	159.5	6.4%
199HG	532.48 10	13/2+	42.67 m 9	118.6	8.00E-05	M4	2310	167.8	159.5	4.9%
196TL	394.2 5	(7+)	1.41 h 2	120.1 3	100	M4	2.30E3 5	155.5	147.7	5.0%

Most relevant candidates to conclude the $\alpha_{K}(exp)$ series: NuDat selection

1. $_{71}^{171m}Lu, \Delta_{K}=8.3\%$

71.1-keV E3, single IT γ , T_{1/2}=79 s, (p,n), (p,2n); $\alpha_{K}(exp)=3.0(10)$ (1965Bj01) ¹⁷¹Lu g.s. ϵ , T_{1/2}=8.2 h, ($\lambda \times I_{Kx}$)(g.s./m.s.)=4.2(3)%

2. ${}_{53}{}^{130m}I, \Delta_{K}=7.5\%$

40.0-keV M3, single IT γ , T_{1/2}=8.8 m %IT=84%, (p,n), (n_{th}, γ); no $\alpha_{\rm K}$ (exp) ¹³⁰I g.s. β^{-} , T_{1/2}=12.4 h, ($\lambda \times I_{\rm Kx}$)(g.s./m.s.)=0.100(4)% ¹³⁰mI % β^{-} =16, negligible Kx rays

3. $_{41}^{93m}Nb, \Delta_{K}=8.1\%$

30.8-keV M4, single IT γ, T_{1/2}=16.1 y, (p,n), (p,α), (³He,d), (α,p), (α,d); α_K(exp)=25800(1500) (5.8%) (1965Bj01) NbKx rays: 16.5 – 19 keV (very low for HPGe detector)

Most relevant candidates to conclude the $\alpha_{\rm K}({\rm exp})$ series: 2002Ra45 selection

- 4. ${}_{50}{}^{117m}$ Sn, Δ_{K} =2.1%, $\alpha_{K}(exp)$ =30.2(15), %unc=5.0% 156.0-keV M4 IT γ , T_{1/2}=14.0 d, (n_{th}, γ) 158.6 M1(+E2) γ , α_{K} (M1)/ α_{K} (M4)=4.7%
- 5. ${}_{52}{}^{125m}Te, \Delta_{K}=3.2\%, \alpha_{K}(exp)=167(7) (2002Ra45), \%unc=4.2\%$ 109.3-keV M4 IT γ , $T_{1/2}=57.4$ d, $(n_{th},\gamma), \alpha_{K}(FO)=185, \alpha_{K}(NH)=179$ 30.5 M1+E2, $\delta=0.031(3) \gamma, \alpha_{K}(M1+E2)/\alpha_{K}(M4)=6.3\%$
- 6. $\int_{52}^{123m} Te, \Delta_{K} = 3.7\%, \alpha_{K}(exp) = 455(9) \text{ (in ENSDF; NOT in 2002Ra45),} \\ \%unc = 2.0\%$ 88.5-keV M4 IT γ , $T_{1/2} = 119.2$ d, $(n_{th}, \gamma), \alpha_{K}(FO) = 481, \alpha_{K}(NH) = 463$ 159.0 M1+E2, $\delta = +0.062(6) \gamma, \alpha_{K}(M1+E2)/\alpha_{K}(M4) = 0.03\%$
- 7. ${}_{52}{}^{129m}Te, \Delta_{K}=2.8\%, \alpha_{K}(exp)=213(10) (2002Ra45), \%unc=4.7$ 105.5-keV M4 γ , %IT=63(17), T_{1/2}=33.6 d, (n_{th}, γ), $\alpha_{K}(FO)=217, \alpha_{K}(NH)=211$ also % $\beta^{-}(m.s.)=17(17), I(Kx,m.s.\beta^{-})/I(Kx,IT)\ll1$ ${}^{129}Te g.s. T_{1/2}=69.6 m, I(Kx,g.s.\beta^{-})/I(Kx,IT)=0.51(14)\%$