

β⁻ and γ-ray emission probabilities in decay of ⁶⁷Cu

Jun Chen

Nuclear Engineering Division

Argonne National Laboratory

2013 USNDP

Motivation

⁶⁷Cu radionuclide has a potential for wide use in SPECT imaging and cancer therapy because of its desirable physical and biologic characteristics.

⁶⁷Cu production:

(p,2p), (p, α),(n,p), (γ ,p) @BNL, LANL, TRIUMF and FRIB (future)

But it's expensive (~\$295/mCi (DOE-NIDC)) and its availability is limited.

⁶⁷Cu β⁻ decays: previous studies

⁶⁷Cu production yield and radiation doses are determined using the absolute β- and γ-ray emission probabilities.

			3/2	- <u>0</u> 61.83 h
Values adopted in ENSDF and MIRD				⁶⁷ Cu
Level (keV)	l _β (%)	Ε _γ (keV)	Ι _γ (%) ^b	%β=100 β^{-} $3/2^{-}$ β^{-} $3/2^{-}$
0	~20ª			
93	~22	93	16.1(2)	
185	~57	91	7.0(1)	
		185	48.7(3)	
394	~1.1	209	0.115(5)	
		300	0.797(11)	
		394	0.220(8)	

Given the second state β-feeding , which is expected to be significant.

a. H. T. Easterday, Phys. Rev. 91, 653 (1953).

b. R. A. Meyer et al., Phys. Rev. C 17, 1822 (1978).

Experiment details

- ⁶⁷Cu production: ⁶⁸Zn(γ,p) reaction; 60 MeV bremsstrahlung at RPI LINAC
- Chemical purification: at ANL-CSE; N. Smith et al. ARI 70 (2012)
 2392
- Source preparation: ANL-PHY; thin sources ~ 1μ Ci

Two independent series of measurements:

□ γ- and β-singles measurements with an analog DAQ I_{γ} (%) = $(S_{\gamma}/S_{\beta})x(ε_{\beta}/ε_{\gamma})$ measure separately absolute γ and β-decays

□ β-γ coincidence measurement with a digital DAQ I_{β} (gs to gs) ~ 100 - $\sum N_{\beta\gamma\text{-coin}}/N_{\text{singles}}$

- ✓ LEPS : FWHM=0.5 keV at 122.06 keV
- ✓ Ge : FWHM=1.8 keV at 1332.49 keV
- ✓ PIPS : FWHM=4 keV, 500 µm thick (singles)
 FWHM=4 keV, 1 mm thick (coincidence)

digital DAQ

set-up for $\beta\text{-}\gamma$ coin.

⁶⁷Cu decay: beta and gamma spectra

From beta and gamma single measurement

Our preliminary g.s. feeding $I_{\beta 0}$ is different from previous measurement by more than 50%

⁶⁷Cu decay: beta and gamma spectra

From beta and gamma single measurement

Our preliminary g.s. feeding $I_{\beta 0}$ is different from previous measurement by more than 50%

⁶⁷Cu decay: Fermi-Kurie plots and Q_{β} – value

Q(g.s.) = 562(2) keV (this work), 577(8)*(previously measured), 561.3(15) (AME2012)

* H. T. Easterday, Phys. Rev. 91, 653 (1953).

⁶⁷Cu beta decay: half-life of the 93-keV isomer

Summary

Δ Absolute β^- and γ -ray emission probabilities in decay of 67 Cu were measured using both singles and coincidence techniques.

 \Box Preliminary results indicate that the β^2 feeding to the ⁶⁷Zn ground state is significantly different compared to the previously adopted values that are based on a single measurement carried out 60 years ago.

□ Due to the importance and limited availability of the ⁶⁷Cu radionuclide, the impact of the new results on the reaction production cross section and on the therapeutic application of this radioisotope will be imminent

 \Box Q-value of 562(2) keV was measured and it is 4σ more precise than the previously measured one of 577(8) keV.

 \Box Precise value of half-life of 9.37(4) μ s was measured for the isomer.

collaborators

Argonne National Laboratory: Nuclear Engineering Division:

F. G. Kondev D. Ehst

Physics Division:

I. Ahmad M. P. Carpenter J. P. Greene S. Zhu

Chemical Sciences and Engineering:

V. Makarashvili N. A. Smith

FIG. 3. Cu⁶⁷ Fermi analysis of β spectrum.