LLNL Evaluations

CSEWG 2013

Neil Summers

Lawrence Livermore National Laboratory

<image>

LLNL-PRES-646195

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Thermonuclear Reaction Library

- Legacy ECPL/ENDL99 evaluations
 - Incident charged particles (p,d,t,He3,He4), light targets Z<=3 (p,d,t,He3,He4,Li6,Li7)
 - R.M. White, D.A. Resler, S.I. Warshaw 'Evaluation of Charged-Particle Reactions for Fusion Applications,' Proc. from Nuclear Data for Sci. and Tech., Ed. S.M. Qaim, Juelich, Fed. Rep. Germany, 13-17 May (1991)
 - S.T. Perkins, D.E. Cullen, 'Elastic Nuclear plus Interference cross sections for light-charge particles' Nucl. Sci. Eng. 77, 20-39 (1981)

• New evaluations at LLNL by Petr Navratil, David Brown & Chris Hagmann

- · Main sources for new evaluations
 - Descouvemont R-Matrix analysis
 - P. Descouvemont, A. Adahchour, C. Angulo, A. Coc, E. Vangioni-Flam, Atomic Data & Nucl. Data Tables 88, 203 (2004)
 - NACRE (Nuclear Astrophysics Compilation of REaction rate)
 - C. Angulo et al., Nucl. Phys. A656 (1999)3-187
 - Experimental data not in EXFOR
- LANL n+n evaluation by Gerry Hale
- JENDL-4 n+d, n+He3 evaluations
- Inverse kinematics used for remaining evaluations

Evaluations in ENDF/B-VII.1

Evaluations in ENDL2011.0

Lawrence Livermore National Laboratory

Review of ENDL evaluations

- Following slides review ENDL evaluations
- Highlight differences with ENDF
 - Many plots, maybe not enough time to go over them all here
 - Include them so can view in proceedings
- Many cross sections available in both ECPL and ENDF, similar in value, no data to distinguish
 - ENDL favors ECPL, continuity of data library
 - ENDF may want to keep ENDF if similar to ECPL

n+H2 evaluation

- ENDF/B-VII.0 (Chadwick 1997)
- JENDL-4 revised JENDL-3.3
 - Fadeev calc. for (n,el) ang. dist.
- JENDL-4 (n,2n) better fit to Pauletta (1975) data at high energies
- Differences with (n,g), JENDL-4 staggered

Lawrence Livermore National Laboratory

p+H3 evaluation

- ENDF/B-VII.1 (Hale 1999)
 - (p,el), (p,n₀), (p,d₀) [0-12 MeV]
- ENDL2009 (Navratil et al., 2009)
 - (p,el) from ECPL
 - (p,n₀) from ECPL (ENDF newer fit with more recent data)
 - (p,d₀) from ENDF/B-VII.0
 - An extension to 20 MeV is given for the T(p,n) reaction, based on the inverse of the 3He(n,p) reaction given in the ENDF/B file.
 - (p,g) fit to 5 new data sets from PRC
 - [3] Phys. Rev. C 65: 044008 (2002)
 - [4] McBroom et al., Phys. Rev. C 25, 1644 (1982) [in EXFOR]
 - [5] Phys. Rev. 99, 1368 (1955).
 - [6] Calarco et al., Phys. Rev. C 28, 483 (1983) [EXFOR problem]
 - [7] Phys. Rev. C 51, 1624 (1995)

p+H3 evaluation

- ENDF/B-VII.1 (Hale 1999)
 - (p,el), (p,n₀), (p,d₀) [0-12 MeV]
- ENDL2009 (Navratil et al., 2009)
 - (p,el) from ECPL
 - (p,n₀) from ECPL (ENDF newer fit with more recent data)
 - (p,d₀) from ENDF/B-VII.0
 - An extension to 20 MeV is given for the T(p,n) reaction, based on the inverse of the 3He(n,p) reaction given in the ENDF/B file.
 - (p,g) fit to 5 new data sets from PRC
 - [3] Phys. Rev. C 65: 044008 (2002).
 - [4] McBroom et al., Phys. Rev. C 25, 1644 (1982) [in EXFOR]
 - [5] Phys. Rev. 99, 1368 (1955).
 - [6] Calarco et al., Phys. Rev. C 28, 483 (1983) [EXFOR problem].
 - [7] Phys. Rev. C 51, 1624 (1995).

Li-6(p,a)

p+Li6 evaluation

- ENDF/B-VII.1 (Hale 2001)
 - R-matrix analysis of reactions in the A=7 system, which included data for the 6Li(p,p) and 6Li(p,3He) reactions at energies up to about 2.5 MeV.
 - (p,el), (p,He3)
- ENDL2011.0 (Navratil et al. 2010)
 - (p,el) from ECPL and ENDF
 - (p,He3) cross section from Hale, NACRE and Gould
 - 0 0.9 MeV average of NACRE [2] and Hale S-factors
 - 0.9 2 MeV, Hale S-factor
 - 2 7.5 MeV, NACRE S-factor
 - 8 MeV 12 MeV, S-factor data from [3]
 - 12 MeV 30 MeV, extrapolation
 - Angular distributions: From ECPL.
- NACRE
 - [2] C. Angulo et al., Nucl. Phys. A656 (1999)3-187.
- [3] C. R. Gould, R. O. Nelson, J. R. Williams, J. R. Boyce, "Cross-Section Requirements for Charged-Particle Fusion Reactors: The 6Li(p,3He)alpha Reaction." Nucl. Sci. Eng. 55 (1974) 267

p+Li7 evaluation

- ENDF/B-VII.1 (Page 2004)
 - (p,el), (p,n'₀), (p,d₀), (p,α₀)
- ENDL2009 (Navratil 2008)
 - 7Li(p,n)
 - Both ECPL and ENDF/B-VII.0 cross-sections were discarded. Evaluation is based purely on data
 - (p,n₀) [ground state]:
 - NIMPR 133, 253 (1976) for 0-2.35 MeV
 - PRC 10, 1299 (1974) for 2.4-3.6 MeV
 - VANT YK 4, 17 (1984) for 3.6-25 MeV
 - PRC 14, 438 (1976) for 25-26 MeV
 - Datasets matched with splines.
 - (p,n₁) [0.4291 MeV excited state):
 - NPA 182, 2, 321 (1972) for 2.3-5 MeV
 - VANT YK 4, 17 (1984) for 5-25 MeV
 - PRC 14, 438 (1976) for 25-26 MeV
 - Datasets matched with splines
 - Angular distributions
 - Taken from Page's ENDF/B-VII.0 evaluation
 - Distribution for excited state is same as ground state, but threshold is shifted.

p+Li7 evaluation

- ENDF/B-VII.1 (Page 2004)
 - (p,el), (p,n'_0), (p,d_0), (p,\alpha_0)
- ENDL2009 (Navratil 2008)
 - (p,el) from ECPL
 - (p,a)
 - Cross-section
 - < 2.6 MeV : Descouvement [3] S-factor</p>
 - 2.6 3.15 MeV : three experimental points from the Rice measurement
 - > 3.15 MeV : Page evaluation
 - Note EXFOR file with the NP 33, 449 (1962) data is wrong as there was an erratum in NP 41, 176 (1963) (data needs to be multiplied by 10/7), divided by 2 as normalization based on 1958 measurement that counted alphas
 - Angular distributions from ENDF/B-VII.0
- Decouvemont 2004
 - [3] P. Descouvemont, A. Adahchour, C. Angulo, A. Coc, E. Vangioni-Flam, Atomic Data and Nuclear Data Tables 88, 203 (2004).

p+Li7 evaluation

- ENDF/B-VII.1 (Page 2004)
 - (p,el), (p,n'_0), (p,d_0), (p,\alpha_0)
- ENDL2009 (Navratil 2008)
 - 7Li(p,d)
 - Cross-section
 - < 10 MeV from ENDF/B-VII.0</p>
 - To extrapolate to 30 MeV, integrated the cross section from Fig. 6 of PR 163,4,1066 (1967) and got 24 mb.
 Measurement was at 33.6 MeV proton energy.
 Recommend to use 24 mb at 30 MeV and make a linear interpolation to the 10 MeV point of Page
 - Angular distributions from ENDF/B-VII.0

d+d evaluation

- ENDF/B-VII.0 (Hale 2001)
 - (d,el), (d,n), (d,p)
- ENDL2009.0 (Navratil 2009)
 - (d,el) from ECPL
 - H2(d,n) and H2(d,p)
 - Cross-section:
 - < 1.96 MeV Descouvement [3] S-factor R-matrix</p>
 - 1.96 5 MeV spline to Ref [4]
 - > 5MeV ECPL
 - Angular distributions: From ECPL
 - Note: The slight mass differences between the p & n and between the t & 3He were ignored in the creation of the angular distributions in ECPL
- Decouvemont 2004
 - [3] P. Descouvemont, A. Adahchour, C. Angulo, A. Coc, E. Vangioni-Flam Atomic Data and Nuclear Data Tables 88, 203 (2004)
- [4] Nucl. Phys. A 192 (1972) 609

d+d evaluation

- ENDF/B-VII.0 (Hale 2001)
 - (d,el), (d,n), (d,p)
- ENDL2009.0 (Navratil 2009)
 - (d,el) from ECPL
 - H2(d,n) and H2(d,p)
 - Cross-section:
 - < 1.96 MeV Descouvement [3] S-factor R-matrix</p>
 - 1.96 5 MeV spline to Ref [4]
 - > 5MeV ECPL
 - Angular distributions: From ECPL
 - Note: The slight mass differences between the p & n and between the t & 3He were ignored in the creation of the angular distributions in ECPL
- Decouvemont 2004
 - [3] P. Descouvemont, A. Adahchour, C. Angulo, A. Coc, E. Vangioni-Flam Atomic Data and Nuclear Data Tables 88, 203 (2004)
- [4] Nucl. Phys. A 192 (1972) 609

H-3(d,n)

d+t evaluation

- ENDF/B-VII.0 (Hale 1995)
 - (d,el), (d,n₀), (d,n₁)
- ENDL2009.0 (Navratil 2009)
 - (d,el) from ECPL
 - H3(d,n₀)
 - Cross-section:
 - Low energy Descouvemont [3]
 - High energy ECPL
 - Peak at 105 keV of 4.85 b
 - TUNL evaluation peak 4.88 b at 105 keV
 - ECPL 4.99 b at 107 keV
 - ENDF 5.01b at 108 MeV
 - Angular distributions: Taken from ECPL
 - H3(d,n₁)He4* -> p+t
 - ENDF evaluation extended up to 30 MeV
- Decouvemont 2004
 - [3] P. Descouvemont, A. Adahchour, C. Angulo, A. Coc, E. Vangioni-Flam Atomic Data and Nuclear Data Tables 88, 203 (2004)
- [4] Nucl. Phys. A 192 (1972) 609

H-3(d,g)

d+t evaluation

- ENDF/B-VII.0 (Hale 1995)
 - (d,el), (d,n₀), (d,n₁)
- ENDL2009.0 (Navratil 2009)
 - d + t -> g + 5He* -> g + n + 4He
 - Cross-section
 - The t(d,g) evaluation is based on Ref. [4]. Several experiments agree that the crosssection ratio is constant at resonance. At higher energies, the ratio appears to rise. In particular, there is a Caltech measurement going up to 9 MeV. Therefore, we did the following:
 - Below 0.4 MeV, we took the ratio 1.2 x 10-4 from the above Ref. [4]
 - From 0.4 to 9 MeV we assumed a linear increase up to 7 x 10-4 according the Caltech data referenced in the above Ref. [4]
 - At higher energies, there is no information. Therefore, we kept the 9 MeV ratio also beyond
 - Note that the EXFOR files with the PRL 53, 767 (84) data appear to be incorrect
 - Angular distributions: Taken from ECPL

d+He3 evaluation

- ENDF/B-VII.0 (Hale 2001)
 - (d,el), (d,p₀)
- ENDL2009.0 (Navratil 2009)
 - (d,el) from ECPL
 - He3(d,p)
 - Cross-section:
 - low energy coming from Descouvemont 2004
 - matched at higher energies with ECPL
 - Angular distributions: From ECPL
 - Note: The slight mass differences between the p & n and between t & 3He were ignored in the creation of the angular distributions in ECPL

d+Li6 evaluation

- ENDF/B-VII.0 (Page 2004)
 - (d,el), (d,n₀), (d,p₀), (d,a₀)
- ENDL2011.0 (Navratil 2010)
 - (d,el) from ENDF (extended to higher energies)
 - (d,a) from ENDF (up to 4.55 MeV)
 - extended to higher energies to match data from [3,4]
 - ENDF low, needs re-evaluating
 - (d,n+He3) from ECPL

[3] R. Risler, W. Gruebler, A. A. Debenham, V. Koenig, P. A. Schmelzbach, D. O. Boerma, Nucl. Phys. A 286, 115 (1977)

[4] N Arena, I Ya Barit, S Cavallaro, A d'Arrigo, G Fazio, G Giardina, V V Ostashko, M Sacchi, V N Urin and S V Zuyev, J. Phys. G 20, 12, 1973 (1994)

d+Li6 evaluation

- ENDF/B-VII.0 (Page 2004)
 - (d,el), (d,n₀), (d,p₀), (d,a₀)
- ENDL2011.0 (Navratil 2010)
 - (d,n) from ECPL
 - (d,p) from ENDF (extended to higher energies)
 - (d,t+p) from ECPL, expt data labeled as (d,t)

Li-6(d,p+t)

Lawrence Livermore National Laboratory

d+Li7 evaluation

- ENDF/B-VII.0 (Hale 2003)
 - (d,el), (d,na), (d,t₀)
- ENDL2011.0 (Navratil 2010)
 - (d,el) from ENDF, extended up to 30 MeV
 - (d,na) from ECPL (but ENDF better fit to data)
 - (d,t) from R.L. Macklin [5] data up to 4 MeV; at higher energies scaled ENDF
 - Angular distributions: ENDF/B-VII.0

[5] R.L. Macklin, H.E. Banta, Phys. Rev., 97, 753 (1955)

d+Li7 evaluation

- ENDF/B-VII.0 (Hale 2003)
 - (d,el), (d,na), (d,t₀)
- ENDL2011.0 (Navratil 2010)
 - (d,2n) from ECPL
 - (d,p)
 - < 0.7 MeV from Ref. [3]</p>
 - 0.7 3.4 MeV from Ref. [4]
 - > 3.4 MeV educated guess
 - Angular distributions: from (d,na) neutron dist.

[3] B.W. Filippone, A.J. Elwyn, W. Ray Jr., D.D. Koetke, Phys. Rev. C, 25, 2174 (1982)
[4] D.W.Mingay, J, SAP, 2, (3), 107 (1979)

t+t evaluation

- ENDF/B-VII.0 (Hale 2001)
 - (t,el), (t,2n)
- ENDL2009.0 = ECPL
 - (t,el), (t,2n)
- Recent R-matrix work for H3(t,2n)He4
 - Dan Sayre
 - Gerry Hale (neutron spectrum)

Li-6(t,n+a)

t+Li6 evaluation

- ENDF/B-VII.0 (Hale 2001)
 - (t,el), (t,na), (t,d₀)
- ENDL2011.0 (Navratil, Brown, Hale 2010)
 - (t,el) from ENDF
 - (t,2n) from ECPL
 - (t,na) ٠
 - Based on data by Valter et al. [3] and Gluzhovskij et al. [4]
 - Angular distributions: From ECPL
 - (t,p) ٠
 - Based on data by Abramovich [7].
 - Un-normalized data by Ciric [6] scaled by 24000 to match [7]
 - Voronchev data [5] for cross section of 8Li excited state seems to justify existence of peak around 1.5 MeV
 - Angular distributions: proton distribution same as neutron distribution from the (n2a)reaction, ignoring the mass differences
 - (t,d) from ENDF

[3] A.K. Valter, P.I. Vacet, L.Ja. Kolesnikov, S.G. Tonapetjan, K.K. Chernjavskij,
[A].Shpetnyj, Atomnaya Energiya 10, (6), 577 (1961)
[4] B.Ja.Guzhovskij, S.N.Abramovich, A.G.Zvenigorodskij, S.V.Trusillo, Prikladnaya Yadernaya, Spektroskopiya 13, 135 (1984)
[5] V T Voronchev, V I Kukulin, J. Phys. G: Nucl. Part. Phys. 26 L123 (2000)
[6] D.Ciric, B.Stepancic, R.Popic, D.Stanojevic, M.Aleksic, Fizika, 4, 193, (1972)
[7] S.N.Abramovich, B.Ja.Guzhovskij, A.G.Zvenigorodskij, S.V.Trusillo, S.A.Dunaeva, Izv. Rossiiskoi Akademii Nauk, Ser.Fiz. 50, (1), 65 (1986)

He3+He3 evaluation

- ENDF/B-VII.0 (Hale 2001)
 - (He3,el), (He3,2p)
- ENDL2011.0 (Navratil 2010)
 - (He3,el) from ENDF
 - (He3,2p)
 - NACRE S-factor evaluation [4] that includes LUNA data [5]
 - Angle and energy distributions: from ENDF

[4] C. Angulo et al. (NACRE Collaboration), Nucl. Phys. A656 (1999)3-187

[5] The LUNA Collaboration, M. Junker, et al., The cross section of 3He(3He,2p)4He measured at solar energies, Nuclear Physics B - Proceedings Supplements, Volume 70, Issues 1-3, Proceedings of the Fifth International Workshop on topics in Astroparticle and Underground Physics, January 1999, Pages 382-385, ISSN 0920-5632.

Li-6(he-3,p+a)

He3+Li6 evaluation

- ENDF/B-VII.0 (Hale 2002)
 - (He3,el), (He3,pa), (He3,d₀)
- ECPL
 - (He3,el), (He3,pa), (He3,d)

10

5

15

E_{inc} (MeV)

0Ľ

30

25

20

Translation from ENDL to ENDF

- New LLNL evaluations developed using ENDL format from variety of sources
 - Why can we not just simply translate back to ENDF?
- When translating from ENDF into ENDL, information is lost
 - Reformatted ENDF parameterized forms to pointwise data for ENDL
 - such as phase space representation
 - Need to rebuild evaluations in ENDF format using actual ENDF distributions
 - can use GND/fudge to do this now
- Legendre distributions from ECPL stored in different format than ENDF
- Will be first evaluations built using new fudge/GND
 - Develop framework in fudge for cut/paste evaluations from different sources
- Evaluations based on ENDF/B-VII.0
 - Need to include updates to some evaluations for ENDF/B-VII.1
- Documentation needs to be re-written for all evaluations
 - Currently too much ENDL speak

