LA-UR-13-28858

CGMF and CoH3 Nuclear Reaction Codes

Toshihiko Kawano, Ionel Stetcu, Patrick Talou

T-2, Nuclear Physics Group Los Alamos National Laboratory

Slide 1

UNCLASSIFIED

CoH3

- What is it?
 - Optical model and coupled-channels calculations (spherical and deformed)
 - Exciton pre-equilibrium model
 - Direct and semi-direct capture model
 - Hauser-Feshbach statistical model
 - Calculates nuclear reaction cross sections for medium and heavy targets
 - keV and MeV energy regions
- Written in C++
- Input files or... "super-lazy mode": coh –z 26 –a 56 -e 10.0
- Newest addition:
 - prompt fission neutron spectrum calculated with the Los Alamos model equations.
 - Pre-fission neutrons included

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for NNSA

USNDP Meeting, BNL, Nov. 19, 2013

NNSX

CGM Cascading Gamma Multiplicities

 T.Kawano, P.Talou, M.B.Chadwick and T.Watanabe, "Monte Carlo Simulation for Particle and γ-Ray Emissions in Statistical Hauser-Feshbach Model," J. Nucl. Sci. Tech. 47, 462 (2010).

Monte Carlo Hauser-Feshbach code

Fig. 6 Inelastic scattering neutron energy spectra from ⁵⁶Fe by 20-MeV incident neutron. The outgoing neutrons are virtually gated by a γ -ray transition from 847 keV 2⁺ state to the 0⁺ ground state, as well as a fixed number of γ -ray multiplicities. The spectra are shown alternately by solid and dotted lines.

UNCLASSIFIED

USNDP Meeting, BNL, Nov. 19, 2013

NNS®

Slide 4

Operated by Los Alamos National Security, LLC for NNSA

NATIONAL LABORATORY

EST.1943

CGMF CGM in Fission

- Perform CGM calculations for all fission fragments
- Event-by-event
- Correlations, distributions, exclusive data
- MPI parallel options included

♦ CGMF –i 98252 –e 0.0 –n 100000 → output: history file:

```
43 107 18.6565 5.5 1 104.368 2 6 0 0 0 1 1 1 2 3 3
4.382 0.410 0.242 2.450
0.819 1.890 0.801 1.946 0.275 1.622 0.423 1.827 0.160 2.905 0.077 0.766
55 145 14.7974 9.5 -1 77.0161 2 5 0 0 0 1 2 3 3 3
1.126 1.597 0.900 0.989
0.635 0.359 0.637 2.227 0.810 0.750 0.282 1.098 0.090 1.332
```

Z, A, U_i, J_i, π_i , KE_i, N_v, N_y, ... Neutrons: ϵ^1_{cm} , θ^1_{cm} , E¹_{lab}, θ^1_{lab} , ϵ^2_{cm} , θ^2_{cm} , E²_{lab}, θ^2_{lab} ,... Gammas: ϵ^1_{cm} , θ^1_{cm} , E¹_{lab}, θ^1_{lab} , ϵ^2_{cm} , θ^2_{cm} , E²_{lab}, θ^2_{lab} , ...

times 100,000 times 2, in this case

UNCLASSIFIED

Slide 5

Operated by Los Alamos National Security, LLC for NNSA

CGMF Complications due to Fission

Initial conditions of the fission fragments

- Yields in mass, charge, and kinetic energy
- Initial excitation energies
- Initial spin and parity distributions

Limited information on neutron-rich fragments

Fission Fragment Initial Conditions in **Excitation Energy** and **Angular Momentum**

Initial Excitation Energies

• For a given fragment pair $TXE = Q - TKE = (E_{int}^* + E_{def}^* + E_{\perp}^*)_{L,H}$

• Sharing of TXE between light and heavy fragments $\rightarrow R_T = T_L/T_H$

Initial Angular Momentum Distributions

• Total angular momentum conservation

$$\vec{J}_{tot} = \vec{J}_L + \vec{J}_H + \vec{l}$$

Initial distribution in fragments:

$$\begin{split} P(J) \propto (2J+1) \mathrm{exp} \left[-\frac{J(J+1)}{2B^2(Z,A,T)} \right] \\ \text{with} \quad B^2(Z,A,T) = \alpha \frac{\mathcal{I}_0(A,Z)T}{\hbar^2} \end{split}$$

 I_0 is the moment of inertia of the fragment (A,Z) in its ground-state.

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Prompt Neutron Multiplicity <v>(A) and P(v)

Example of ²⁵²Cf (sf)

_____ EST. 1943 _____

Operated by Los Alamos National Security, LLC for NNSA

Average Prompt Fission Neutron Spectrum

- ²⁵²Cf (sf) PFNS is a "standard" (Mannhart, 1989)
- Difficulty to reproduce low-outgoing energy tail
- CGMF calculations better at low-energy but too soft at high energies

Impact of α (<J_i>)

 The α-parameter impacts directly the spin-dependent initial population of the fragments.

0.∠

0.15

0.1

0.05

Probability

Valentine, 2001

 $\alpha = 0.5$ $\alpha = 1.0$

 $\alpha = 1.5 \\ \alpha = 2.0$

²⁵²Cf (sf)

Operated by Los Alamos National Security, LLC for NNSA

Operated by Los Alamos National Security, LLC for NNSA

	<n<sub>y></n<sub>	<\$ \$	
CGMF (α=1.5)	7.91	0.83	
ENDF/B-VII.1	7.048	0.87	
UN	CLASSIFIED		
			/ 4

MATIONAL LABORATORY

Isomeric Ratios

- Using measured ratios of isomer to ground-state to infer initial J_{rms}
- Very mixed results
- Very sensitive to (often unknown) detailed nuclear structure

I. Stetcu, P. Talou, T. Kawano, M. Jandel, Phys. Rev. C 88, 044603 (2013)

Operated by Los Alamos National Security, LLC for NNSA

CGMF Future Work

- Extensions to
 - Higher incident energies
 - Other isotopes
 - \rightarrow Need for pre-neutron fission fragment yields Y(A,Z,KE)
- User manual
- Web interface
- Integration with MCNP6 (NA-22 funded project starting FY14)

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

