Multilevel Breit-Wigner (MLBW) elastic angular distributions

D.A. Brown, NNDC

NATIONAL LABORATORY

Leakage from a critical assembly depends greatly on angular dists.

- A forward peaked distribution lets more particles escape from collision events on boundaries than an isotropic one
- Most evident in small critical systems

cea
 Shielding benchmark

ASPIS benchmark (iron)

Total Monte Carlo results obtained with the TRIPOLI code shows that above 20 cm , the flux attenuation is dominated by higher order polynomial coefficient uncertainties

from G. Noguere

What angular distributions are available in the resonance region?

Format	Number occurrences	Number with angular distributions enabled
scattering radius only	66	0
SLBW	8	0
MLBW	270	0
Reich Moore (LRF=3)	54	46
R Matrix Limited (LRF=7)	1	0
URR only	26	0

What angular distributions are available in the resonance region?

Format	Number occurrences	Number with angular distribibutions enabled
scattering radius only	66	0
SLBW	8	0
	MLBW	270
Reich	0	
Moore (LRF=: can we salvage these guys?		
R Matrix Limited (LRF=7)	1	0
URR only	26	0

MLBW Approximation to the R matrix

- R matrix theory gets us the collision matrix (c=channel index)

$$
U_{c c^{\prime}}=e^{-i\left(\varphi_{c}+\varphi_{c^{\prime}}\right)}\left(\delta_{c c^{\prime}}+i \sum_{\lambda, \mu} \Gamma_{\lambda c}^{1 / 2} A_{\lambda \mu} \Gamma_{\mu c^{\prime}}^{1 / 2}\right)
$$

- in terms of the level matrix A :

$$
\left(\mathbf{A}^{-1}\right)_{\lambda \mu}=\left(E_{\lambda}-E\right) \delta_{\lambda \mu}-\sum_{c} \gamma_{\lambda c} L_{c}^{0} \gamma_{\mu c}
$$

- Here, E_{λ} is the resonance energy, $y_{\lambda c}$ is the reduced width and $L^{0}{ }_{c}$ is essentially the hard sphere shift and penetrability

MLBW Approximation to the R matrix

- With just the scattering matrix, we can compute the total cross section

$$
\sigma_{c} \equiv \sum_{c^{\prime}} \sigma_{c c^{\prime}}=2 \pi \lambda_{c}^{2}\left(1-\Re U_{c c}\right)
$$

- and the cross section to channel c^{\prime}

$$
\sigma_{c c^{\prime}}=\pi \lambda_{c}^{2} g_{c}\left|\delta_{c c^{\prime}}-U_{c c^{\prime}}\right|^{2}
$$

MLBW Approximation to the R matrix

- MLBW throws away off diagonal parts of the level matrix and renames things into the widths we are familiar with

$$
\begin{aligned}
\left(\mathbf{A}^{-1}\right)_{\lambda \mu} & =\left(E_{\lambda}-E-\sum_{c} L_{c}^{0} \gamma_{\mu c}^{2}\right) \delta_{\lambda \mu} \\
& \equiv\left(E_{\lambda}+\Delta_{\lambda}-E-i \Gamma_{\lambda} / 2\right) \delta_{\lambda \mu}
\end{aligned}
$$

- Result is that collision matrix no longer unitary; we can measure this with Frobenius norm:

$$
\|U\|_{F}=\sqrt{\sum_{c c^{\prime}} U_{c c^{\prime}}^{*} U_{c^{\prime} c}}
$$

If U is unitary, $\|U\|_{F}=\sqrt{\operatorname{dim}(U)}$

So MLBW is not unitary. Is this a problem?

ENDF’s MLBW != R matrix MLBW

- ENDF MLBW uses SLBW formulas for non-elastic cross sections

Bad

- ENDF overrides use of potential scattering radius in phase-factor of scattering matrix

Meh

ENDF's MLBW capture is clearly different

This naturally impacts the total too

ENDF MLBW elastic is the same as the \mathbf{R} matrix MLBW elastic

Elastic

Blatt-Beidenharn shows us how to make angular distributions

According to Blatt-Biedenharn formalism, we only need a collision matrix in order to compute an angular distribution:

$$
\frac{d \sigma_{\alpha, \alpha^{\prime}}(E)}{d \Omega}=\frac{1}{k^{2}(2 i+1)(2 I+1)} \sum_{s, s^{\prime}} \sum_{L=0}^{\infty} B_{L}\left(\alpha s, \alpha^{\prime} s^{\prime} ; E\right) P_{L}(\mu)
$$

where

$$
\begin{aligned}
& B_{L}\left(\alpha s, \alpha^{\prime} s^{\prime} ; E\right)= \\
& \quad \frac{(-)^{s-s^{\prime}}}{4} \sum_{c_{1}=\left\{\alpha \ell_{1} s_{1} J_{1}\right\}} \sum_{c_{1}^{\prime}=\left\{\alpha^{\prime} \ell_{1}^{\prime} s_{1}^{\prime} J_{1}^{\prime}\right\}} \sum_{c_{2}=\left\{\alpha \ell_{2} s_{2} J_{2}\right\}} \sum_{c_{2}^{\prime}=\left\{\alpha^{\prime} \ell_{2}^{\prime} s_{2}^{\prime} J_{2}^{\prime}\right\}} \bar{Z}\left(\ell_{1} J_{1} \ell_{2} J_{2} s L\right) \bar{Z}\left(\ell_{1}^{\prime} J_{1} \ell_{2}^{\prime} J_{2} s^{\prime} L\right) \\
& \quad \times \delta_{s s_{1}} \delta_{s^{\prime} s_{1}^{\prime}} \delta_{J_{1} J_{1}^{\prime} \delta_{s s_{2}} \delta_{s^{\prime} s_{2}^{\prime}}^{\prime} J_{J_{2} J_{2}^{\prime}}\left(\delta_{c_{1} c_{1}^{\prime}}-U_{c_{1} c_{1}^{\prime}}(E)\right)^{*}\left(\delta_{c_{2} c_{2}^{\prime}}-U_{c_{2} c_{2}^{\prime}}(E)\right)}
\end{aligned}
$$

We can get MLBW angular distributions!!!

- For the MLBW format, we have such a thing:

$$
U_{c c^{\prime}}=e^{-i\left(\varphi_{c}+\varphi_{c^{\prime}}\right)}\left(\delta_{c c^{\prime}}+\sum_{\lambda} \frac{i \Gamma_{\lambda c}^{1 / 2} \Gamma_{\lambda c^{\prime}}^{1 / 2}}{E_{\lambda}+\Delta_{\lambda}-E-i \Gamma_{\lambda} / 2}\right)
$$

- The MLBW formalism in ENDF is "broken", but it's elastic channel and the collision matrix are not

OK then, what does it look like?

The angular distribution directly from ENDF MLBW parameters

Try it on a more popular isotope: ${ }^{90} \mathrm{Zr}$ distribution of level widths

Try it on a more popular isotope: ${ }^{90} \mathbf{Z r}$ angular distribution

Try it on a more popular isotope: ${ }^{90} \mathbf{Z r}$ zoom in on angular distribution

What next?

- Finish coding hooks in Fudge
- Get the distributions into an ENDF file (e.g. 90Zr)
- Compare to ${ }^{\text {nat } Z r} \bar{\mu}$
- Try it out in a benchmark

