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Leakage from a critical assembly 
depends greatly on angular dists.

 A forward peaked distribution lets more particles escape 
from collision events on boundaries than an isotropic one

 Most evident in small critical systems
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Shielding benchmark 

ASPIS benchmark (iron) 
 
Total Monte Carlo results obtained with the TRIPOLI code shows that above 20 cm, the flux 
attenuation is dominated by higher order polynomial coefficient uncertainties 
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What angular distributions are 
available in the resonance region?

4

Format Number 
occurrences

Number with angular 
distributions enabled

scattering radius only 66 0

SLBW 8 0

MLBW 270 0

Reich Moore (LRF=3) 54 46

R Matrix Limited (LRF=7) 1 0

URR only 26 0
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What angular distributions are 
available in the resonance region?

5

Format Number 
occurrences

Number with angular 
distributions enabled

scattering radius only 66 0

SLBW 8 0

MLBW 270 0

Reich Moore (LRF=3) 54 46

R Matrix Limited (LRF=7) 1 0

URR only 26 0

can we salvage these guys?
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MLBW Approximation to the R matrix

 R matrix theory gets us the collision matrix (c=channel 
index)

 in terms of the level matrix A:

 Here, Eλ is the resonance energy, γλc  is the reduced 
width and L0c is essentially the hard sphere shift and 
penetrability 

6

D The level matrix A II THE R MATRIX

B. The K matrix

From [4]. We usually like to use U where

u
r!1���! v�1/2(I�OU)C (28)

where the complex matrix C is arbitrary and non-
singular. With the choice C = i(1+U)C0, we can write
this equivalently as

u
r!1���! v�1/2(F+GK)C0 (29)

where F and G are the regular and irregular Coulomb
functions F

`

and G
`

(packed in the form of a matrix).
So,

K = i(1�U)(1+U)�1 (30)

or

U = (1� iK)�1(1+ iK) (31)

Red Cullen [46] and SAMMY [36] might use K.

C. The ⇢ matrix

[FIGURE OUT WHAT THIS IS, PREPRO USES IT]

D. The level matrix A

The SAMMY manual also proves the following connec-
tion between the R matrix and the A matrix:

R
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0
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c
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cc

0 �R
cc

0L0

c

⇤X

µ⌫
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µc
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µ⌫

�
⌫c

00 (32)

or
X

µ⌫

�
µc

A
µ⌫

�
⌫c

0 =
⇥
(I�R · L0)�1 ·R

⇤
cc

0 (33)

This connection is interesting and helps us write U
cc

0 in
terms of the level matrix A:

U
cc

0 = e�i('c+'c0 )

0

@�
cc

0 + i
X

�,µ

�1/2

�c

A
�µ

�1/2

µc

0

1

A

(34)

with

�1/2

�c

= �
�c

p
2P

c

(35)

and

(A�1)
�µ

= (E
�

� E)�
�µ

�
X

c

�
�c

L0

c

�
µc

(36)

Lane and Thomas [5] find this same result by performing
an eigenvalue decomposition of the U matrix in Section
IX.1, p. 293. In terms of A then, X is

X
cc

0 =
1

2

X

�,µ

�1/2

�c

A
�µ

�1/2

µc

0 (37)

=
X

�,µ

P 1/2

c

�
�c

A
�µ

�
µc

0P 1/2

c

0 (38)

In practice, we use R (and X) but not A because there
are many fewer channels than levels so the matrices are
smaller and numerically more stable as a consequence.
For comparison, in the ENDF/B-VII.1 238U evaluation,
there are four open reactions ((n, �), (n,el), (n,f

A

) and
(n,f

B

)) in two spin groups ((`, J) = (0, 1

2

) or (1, 3

2

)) and
3343 resonances so R is a 8 ⇥ 8 matrix while A is a
3343⇥ 3343 matrix.

E. Wigner-Eisenbud Approach

Boundary parameters B
c

are chosen as real constants,
making eigenvalues E

�

and decay amplitudes �
�c

real and
constant and the energy dependence of U is solely due to
'
c

and L
c

, both known functions of incident energy E.
With B

c

real and constant, write

(A�1)
�µ

= (E
�

� E)�
�µ

�
X

c

�
�c

L0

c

�
µc

(39)

Here the eigenvalues E
�

and decay amplitudes �
�c

are
real and constant and the energy dependence of L

c

is
known

F. Kapur-Peierls Approach

Pick B
c

= L
c

so 1�RL0 = 1, but now have complex
eigenvalues and amplitudes. Write

(A�1)
�µ

= (E
�

� E)�
�µ

(40)

so

X
cc

0 = P 1/2

c

R
cc

0P 1/2

c

0 �
JJ

0 (41)

with

R
cc

0 =
X

�

�
�c

�
�c

0

E
�

� E
(42)

The collision matrix is then

U
cc

0 = e�i('c+'c0 )

 
�
cc

0 + i
X

�

G1/2

�c

G1/2

�c

0

E
�

� E

!
(43)

G1/2

�c

= g
�c

p
2P

c

(44)

Note, as both the Kapur-Peierls and Wigner-Eisenbud
forms are equivalent, it is tedious but straightforward to
formally change between the representations. In practice,
you have to do some complicated iterative procedure, de-
tailed in Fröhner [7], section 3.3.6.
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MLBW Approximation to the R matrix

 With just the scattering matrix, we can compute the total 
cross section

 and the cross section to channel c’

7

B Integrals of the cross section IV OBSERVABLES

IV. OBSERVABLES

A. Cross sections

Angle integrated cross section can be written as sum
over all entrance channels c = {↵J`s} and exit channels
c0 = {↵0J 0`0s0} that lead from partition ↵ to ↵0:

�
cc

0 = ⇡�2

c

g
c

|�
cc

0 � U
cc

0 |2 (77)

So, the total cross section for channel c is

�
c

⌘
X

c

0

�
cc

0 = 2⇡�2

c

(1�<U
cc

) (78)

The factor of g
c

is the probability of getting the correct
J from the spins of the collision partners (according to
Fröhner) and is g

c

= (2J + 1)/((2i+ 1)(2I + 1)).
Detailed balance (swapping c and c0 in U

cc

0) (⌘ time
reversal invariance) gets us

�
c

0
c

g
c

0�2

c

0
=

�
cc

0

g
c

�2

c

(79)

Note, these equations only make sense for di↵erential
cross sections that can actually be integrated. For un-
charged projectiles (n’s and �’s) these equations make
sense. For e.g. protons, one cannot integrate the elastic
di↵erential cross section d�/d⌦ over angles because of the
Coulomb singularity. In those cases, one must use di↵er-
ential cross sections given below in the section of angular
distributions.

B. Integrals of the cross section

Several integral quantities are easy to measure and thus
are useful for data comparison and testing:

• Resonance integrals (RI):

RI =

Z 1

Ec

�(E)dE/E (80)

Here the lower cut-o↵ is usually taken to be the
Cadmium cut-o↵ energy of E

c

= 0.5 eV (see S.
Mughabghab, Atlas of Neutron Resonances). If the
covariance is provided, the uncertainty on the res-
onance integral will be computed.

• Maxwellian averaged cross section (MACS):

MACS(kT ) =
2p
⇡

m2

(kT )2

Z 1

0

dEE�(E)e�mE/kT

(81)

E is the incident neutron energy in the lab frame
and m = m

2

/(m
1

+m
2

)
• Wescott G-factor:
is the ratio of Maxwellian averaged cross section (at
room temparature) and the room temperature cross
section. Should be pretty close to 1 if cross section
goes like 1/v.

C. Angular distributions for two-particle out
channels

The Blatt-Beidenharn to construct the d�
c

/d⌦ for the
(usu.) elastic channel [8]. Is valid for any two-body sys-
tem in the center-of-momentum (⌘ center of mass usu.).
Spin algebra may only be valid in non-relativistic limit
(HAVE TO CHECK). Although d�

c

/d⌦ can be written
as a Lorenz covariance quantity, we will write the outgo-
ing dependence on angle in the pair center of mass frame
and the incident energy in the laboratory frame.

For spin zero particles, we have

d�
↵,↵

0(E)

d⌦
=

1

k2

1X

L=0

B
L

(↵,↵0;E)P
L

(µ) (82)

and

B
L

(↵,↵0;E) =
1

4

X

`,`

0

(2`+ 1)(2`0 + 1)(``000, L0)2(1� U⇤
`

(E))(1� U
`

0(E)) (83)

Here U
`

is the scattering matrix and only depends on ` because we have spin zero particles.
For particles with arbitrary spin, we have

d�
↵,↵

0(E)

d⌦
=

1

k2(2i+ 1)(2I + 1)

X

s,s

0

1X

L=0

B
L

(↵s,↵0s0;E)P
L

(µ) (84)
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MLBW Approximation to the R matrix

 MLBW throws away off diagonal parts of the level matrix 
and renames things into the widths we are familiar with

 Result is that collision matrix no longer unitary; we can 
measure this with Frobenius norm:

8

A Single level Breit-Wigner (SLBW) V USEFUL APPROXIMATIONS OF THE R MATRIX

In other words, the so-called level matrix has one measly
level in it! The level shift � and total width � =

P
c

�
c

are both real and the energy dependencies are explicit
and well known.

With these choices, the R matrix for one level is

R
cc

0 =
�
c

�
c

0

E
0

� E
(99)

but for the one level only. Got that? Just one level. I
want to emphasize that. You know. That one level thing.
OK? (can add in background R matrix, if needed) and
the scattering matrix U for one level simplifies to

U
cc

0 = e�i('c+'c0 )

 
�
cc

0 +
i�1/2

c

�1/2

c

0

E
0

+�� E � i�/2

!

(100)

where the total width � =
P

c

�
c

for one level.
With these, the cross sections are

�
c

=4⇡�2
c

g
c

⇢
sin2 '

c

+
�
c

�
( (x) cos(2') + �(x) sin(2'

c

))

�
(101)

�
cc

0 =4⇡�2
c

g
c

�
c

�
c

0

�
 (x) for c 6= c0 (102)

�
cc

=�
c

�
X

c

0 6=c

�
cc

0 (103)

With x = 2(E � E0
R

)/� and  and � are the profile
functions given above in Eqs. (64) and (65). Note, the U
for individual levels is unitary (by construction, but see
proof in appendix ??).

In the limit of one isolated resonance, all approxima-
tions to the R matrix (and the R matrix itself) reduce
to the SLBW case. In Fig. 12 we can get a feeling
for the anatomy of a resonance. The symmetrical part
(controlled by the profile function  ) is the resonance-
resonance term. The smooth background is purely po-
tential scattering. The asymmetric part is a result of
potential-resonance interference (controlled by the pro-
file function �).

B. Multi level Breit-Wigner (MLBW)

This is an improvement on the SLBW approach, be-
cause it does allow interference between resonances.

In the MLBW approximation, all o↵-diagonal elements
of A�1 ignored. So,

(A�1)
�µ

= (E
�

� E �
X

c

L0

c

�2
µc

)�
�µ

⌘ (E
�

+�
�

� E � i�
�

/2)�
�µ

(104)

The level shift �
�

and total width �
�

=
P

c

�
�c

are both
real and the energy dependencies are explicit and well

FIG. 12. Typical isolated resonance, taken from Fig. 11
of Ref. [7]. Here �c is the full cross section of the channel,
the potential scattering for channel c is �p,c and the minimum
value of the cross section is �c

� �p,c. The profile functions  
and � are also shown.

known and usually arranged to be the same as SLBW
(at least that’s what ENDF does).
With these choices, the R matrix is

R
cc

0 =
X

�

�
�c

�
�c

0

E
�

� E
(105)

(to add in background R matrix, if needed) and the scat-
tering matrix U simplifies to

U
cc

0 = e�i('c+'c0 )

 
�
cc

0 +
X

�

i�1/2

�c

�1/2

�c

0

E
�

+�
�

� E � i�
�

/2

!

(106)

where the total width �
�

=
P

c

�
�c

.
According to ENDF, hearsay, and Fröhner, MLBW is

not unitary. I should really check it. Fröhner demon-
strates this by showing that the sum of the parts of the
total cross section does not equal the total cross section
computed using the collision matrix.
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B Multi level Breit-Wigner (MLBW), LRF=2 VII RESONANCES IN ENDF

Test name Fudge Routine Quantity Details

P Wave U Value � getScatteringMatrixU U P wave only (based on 148m1Pm),
tests specific values of collision matrix

P Wave Unitarity getScatteringMatrixU U P wave only (based on 148m1Pm),
tests unitarity of collision matrix 2 ways

Full Unitarity getScatteringMatrixU U Realistic (based on 18O),
tests unitarity of collision matrix 2 ways

P Wave 3 Way � getScatteringMatrixU �(E) P wave only (based on 148m1Pm),
tests � calculation using BB, U and Fudge

Full 3 Way � getScatteringMatrixU �(E) Realistic case (based on 18O),
tests � calculation using BB, U and Fudge

Full Total Sum Rule getScatteringMatrixU �(E) Realistic case (based on 18O),
tests total � calculation U

BL analytic getAngularDistribution ⇧L(E) P wave only (based on 148m1Pm),
P (µ|E)’s Legendre series expansion and BB eq

TABLE V. Summary of unit tests for Fudge’s implementation of MLBW in the MLBWcrossSection class in the
fudge.processing.resonances.fudgeReconstructResonances module.

3. (Same as SLBW gotcha #2) ENDF uses AP
in its definition of ⇢̂. This shifts the phase of
the U matrix in a calculable way to get the
potential scattering to match data and does
not a↵ect the unitarity of the U matrix but is
di↵erent from that implied by a pure R-matrix
treatment.

4. (Same as SLBW gotcha #3) ENDF contains
an ambiguity in its treatment of the channel
spin. When there are multiple possible spins
for a channel, what you are to do is “unspec-
ified” leading to multiple possible interpreta-
tions of the width.

5. (Same as SLBW gotcha #4) In certain cases,
the ENDF format is misused: when an eval-
uator does not know a spin assignment J for
a level, they sometimes use J = I (implying
that the neutron has zero spin!). This gives
g
J

= 1/2 and can result in negative elastic
cross sections.

1. Implications of gotcha #1: Non-unitary collision matrix

For another check, of the unitarity of the collision ma-
trix, consider the Frobenius norm of U :

||U ||
F

=

sX

cc

0

U⇤
cc

0U
c

0
c

(198)

If U is unitary, ||U ||
F

=
p
dim(U). This measure allows

us to characterize a “unitarity defect” in the MLBW pre-
scription. In Fig. 18, we show 18O MLBW resonances
in ENDF/B-VII.X (dev), taken originally from the RUS-
FOND library. Clearly the plotted collision matrix is not
unitary. The impact of the “unitary defect” on the angu-
lar scattering distribution is unclear. However, as we see
in the plots of the total cross section (Fig. 19), the lack

||
U|

| F/
√d

im
(U

)

0.94
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1
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0 5e+05 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06

FIG. 18. Frobenius norm of a collision matrix as a function of
incident neutron energy for a typical MLBW resonance region
(18O). Clearly this collision matrix is not unitary because if it
was, the curve would be identically 1.

of unitarity wrecks the agreement between the di↵erent
approaches to computing the total cross section.

In Fig. 20, we show the Argand diagram of one of the
MLBW matrix elements in the 18O evaluation. When
the trajectory meets the unit circle, then most likely we
have a resonance saturating the unitary bound. When its
modulus exceeds one, the matrix is clearly non unitary.

2. Implications of gotcha #2: Use SLBW equations for

capture, etc.

The SLBW and MLBW cross section do di↵er some-
what, see Fig. 21. This does not a↵ect angular distribu-
tions, but does a↵ect the shape of the cross sections.
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Test name Fudge Routine Quantity Details

P Wave U Value � getScatteringMatrixU U P wave only (based on 148m1Pm),
tests specific values of collision matrix

P Wave Unitarity getScatteringMatrixU U P wave only (based on 148m1Pm),
tests unitarity of collision matrix 2 ways

Full Unitarity getScatteringMatrixU U Realistic (based on 18O),
tests unitarity of collision matrix 2 ways

P Wave 3 Way � getScatteringMatrixU �(E) P wave only (based on 148m1Pm),
tests � calculation using BB, U and Fudge

Full 3 Way � getScatteringMatrixU �(E) Realistic case (based on 18O),
tests � calculation using BB, U and Fudge

Full Total Sum Rule getScatteringMatrixU �(E) Realistic case (based on 18O),
tests total � calculation U

BL analytic getAngularDistribution ⇧L(E) P wave only (based on 148m1Pm),
P (µ|E)’s Legendre series expansion and BB eq

TABLE V. Summary of unit tests for Fudge’s implementation of MLBW in the MLBWcrossSection class in the
fudge.processing.resonances.fudgeReconstructResonances module.

3. (Same as SLBW gotcha #2) ENDF uses AP
in its definition of ⇢̂. This shifts the phase of
the U matrix in a calculable way to get the
potential scattering to match data and does
not a↵ect the unitarity of the U matrix but is
di↵erent from that implied by a pure R-matrix
treatment.

4. (Same as SLBW gotcha #3) ENDF contains
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spin. When there are multiple possible spins
for a channel, what you are to do is “unspec-
ified” leading to multiple possible interpreta-
tions of the width.
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a level, they sometimes use J = I (implying
that the neutron has zero spin!). This gives
g
J

= 1/2 and can result in negative elastic
cross sections.
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us to characterize a “unitarity defect” in the MLBW pre-
scription. In Fig. 18, we show 18O MLBW resonances
in ENDF/B-VII.X (dev), taken originally from the RUS-
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of unitarity wrecks the agreement between the di↵erent
approaches to computing the total cross section.

In Fig. 20, we show the Argand diagram of one of the
MLBW matrix elements in the 18O evaluation. When
the trajectory meets the unit circle, then most likely we
have a resonance saturating the unitary bound. When its
modulus exceeds one, the matrix is clearly non unitary.

2. Implications of gotcha #2: Use SLBW equations for

capture, etc.

The SLBW and MLBW cross section do di↵er some-
what, see Fig. 21. This does not a↵ect angular distribu-
tions, but does a↵ect the shape of the cross sections.
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So MLBW is not unitary.  
Is this a problem?

9
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ENDF’s MLBW != R matrix MLBW

 ENDF MLBW uses SLBW formulas for non-elastic 
cross sections

 ENDF overrides use of potential scattering radius in 
phase-factor of scattering matrix

10

Bad

Meh

Thursday, November 14, 13



ENDF’s MLBW capture is clearly 
different

11

Capture
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This naturally impacts the total too

12

Total
σ t
ot
 (b

)

0

2

4

6

8

10

12

E (eV)
0 5.0x105 1.0x106 1.5x106 2.0x106 2.5x106 3.0x106 3.5x106

Full MLBW (Re(U))
Full MLBW (σel+σγ)
ENDF MLBW (Fudge)

ENDF’s 18O

Thursday, November 14, 13



ENDF MLBW elastic is the same as    
the R matrix MLBW elastic 

13

Elastic
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ENDF’s 18O
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Blatt-Beidenharn shows us how to 
make angular distributions

According to Blatt-Biedenharn formalism, we only need a 
collision matrix in order to compute an angular 
distribution:

where

14

B Integrals of the cross section IV OBSERVABLES

IV. OBSERVABLES

A. Cross sections

Angle integrated cross section can be written as sum
over all entrance channels c = {↵J`s} and exit channels
c0 = {↵0J 0`0s0} that lead from partition ↵ to ↵0:

�
cc

0 = ⇡�2

c

g
c

|�
cc

0 � U
cc

0 |2 (77)

So, the total cross section for channel c is

�
c

⌘
X

c

0

�
cc

0 = 2⇡�2

c

(1�<U
cc

) (78)

The factor of g
c

is the probability of getting the correct
J from the spins of the collision partners (according to
Fröhner) and is g

c

= (2J + 1)/((2i+ 1)(2I + 1)).
Detailed balance (swapping c and c0 in U

cc

0) (⌘ time
reversal invariance) gets us

�
c

0
c

g
c

0�2

c

0
=

�
cc

0

g
c

�2

c

(79)

Note, these equations only make sense for di↵erential
cross sections that can actually be integrated. For un-
charged projectiles (n’s and �’s) these equations make
sense. For e.g. protons, one cannot integrate the elastic
di↵erential cross section d�/d⌦ over angles because of the
Coulomb singularity. In those cases, one must use di↵er-
ential cross sections given below in the section of angular
distributions.

B. Integrals of the cross section

Several integral quantities are easy to measure and thus
are useful for data comparison and testing:

• Resonance integrals (RI):

RI =

Z 1

Ec

�(E)dE/E (80)

Here the lower cut-o↵ is usually taken to be the
Cadmium cut-o↵ energy of E

c

= 0.5 eV (see S.
Mughabghab, Atlas of Neutron Resonances). If the
covariance is provided, the uncertainty on the res-
onance integral will be computed.

• Maxwellian averaged cross section (MACS):

MACS(kT ) =
2p
⇡

m2

(kT )2

Z 1

0

dEE�(E)e�mE/kT

(81)

E is the incident neutron energy in the lab frame
and m = m

2

/(m
1

+m
2

)
• Wescott G-factor:
is the ratio of Maxwellian averaged cross section (at
room temparature) and the room temperature cross
section. Should be pretty close to 1 if cross section
goes like 1/v.

C. Angular distributions for two-particle out
channels

The Blatt-Beidenharn to construct the d�
c

/d⌦ for the
(usu.) elastic channel [8]. Is valid for any two-body sys-
tem in the center-of-momentum (⌘ center of mass usu.).
Spin algebra may only be valid in non-relativistic limit
(HAVE TO CHECK). Although d�

c

/d⌦ can be written
as a Lorenz covariance quantity, we will write the outgo-
ing dependence on angle in the pair center of mass frame
and the incident energy in the laboratory frame.

For spin zero particles, we have

d�
↵,↵

0(E)

d⌦
=

1

k2

1X

L=0

B
L

(↵,↵0;E)P
L

(µ) (82)

and

B
L

(↵,↵0;E) =
1

4

X

`,`

0

(2`+ 1)(2`0 + 1)(``000, L0)2(1� U⇤
`

(E))(1� U
`

0(E)) (83)

Here U
`

is the scattering matrix and only depends on ` because we have spin zero particles.
For particles with arbitrary spin, we have

d�
↵,↵

0(E)

d⌦
=

1

k2(2i+ 1)(2I + 1)

X

s,s

0

1X

L=0

B
L

(↵s,↵0s0;E)P
L

(µ) (84)
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and

B
L

(↵s,↵0s0;E) =
(�)s�s

0

4

X
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X
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X

`

0
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2
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J
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J
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s0L)
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0
1
�
ss
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0
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0
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0�
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0
2
�
ss

0 � UJ2

↵`2s,↵
0
`

0
2s

0(E)) (85)

=
(�)s�s

0

4

X

c1={↵`1s1J1}

X

c

0
1={↵0

`

0
1s

0
1J

0
1}

X

c2={↵`2s2J2}

X

c

0
2={↵0

`

0
2s

0
2J

0
2}

Z̄(`
1

J
1

`
2

J
2

sL)Z̄(`0
1

J
1

`0
2

J
2

s0L)

⇥ �
ss1�s0s01�J1J

0
1
�
ss2�s0s02�J2J

0
2
(�

c1c
0
1
� U

c1c
0
1
(E))⇤(�

c2c
0
2
� U

c2c
0
2
(E)) (86)

where

Z̄(`
1

J
1

`
2

J
2

, sL) =
p
(2`

1

+ 1)(2`
2

+ 1)(2J
1

+ 1)(2J
2

+ 1)(`
1

`
2

00, L0)W (`
1

J
1

`
2

J
2

, sL) (87)

and W (`
1

J
1

`
2

J
2

, sL) is a Racah coe�cient.

I use the notation
P

c

= {↵`sJ} =
P

`

P
s

P
J

. ENDF
uses the notation

P
c

=
P

`

P
s

, so ENDF needs an extra
sum over J

1

and J
2

.
There are a lot of angular momenta in the above equa-

tions. Let’s try to explain them.

• ↵ is the partition of the compound system into re-
action partners (“defined” above using real reaction
theory)

• J , the total angular momentum in units of ~

• `, the orbital momentum in units of ~

• s, the channel spin in units of ~

and these satisfy the triangle relations

~J = ~̀+ ~s so |`� s|  J  `+ s (88)

~s = ~I +~i so |I � i|  s  I + i (89)

An aside from Toshihiko [54]:

In fact you can get rid of the ground state
spin I from the BB formula, using the com-
pleteness of Clebsh-Gordan coe�cient. The
result is

B
L

=
⇡

k2
1

2(2L+ 1)

X
Z2<(1� S)(1� S)⇤ (90)

This is why the optical model scattering angu-
lar distribution is independent of the ground
state spin. (well, the optical model does not
have any target spins anyway).

In practice want the angular distribution for outgoing
neutrons:

P (µ|E) =
X

L

P
L

(µ)⇧
L

(E) (91)

where µ = cos ✓ and P
L

(µ) are Legendre polynomi-
als. Because P (µ|E) is a probability distribution in µ,

R
P (µ|E)dµ = 1, implying ⇧

0

= 1. Also note, because
P
1

(µ) = µ, µ̄(E) = ⇧
1

(E). To get this,

d�
↵,↵

0(E)

d⌦
=

1

2⇡

d�
↵,↵

0(E)

dµ
(92)

=
�
↵,↵

0(E)

2⇡
P (µ|E) (93)

=
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0(E)

2⇡

X

L

P
L

(µ)⇧
L

(E) (94)

⌘
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L

P
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(µ)�
↵,↵

0
L

(E) (95)

Here we used azimuthal symmetry to get rid of ' angular
dependence. So,

�
↵↵

0(E) =
2⇡

k2(2i+ 1)(2I + 1)

X

s,s

0

B
0

(↵s,↵0s0;E)

(96)

and

⇧
L

(E) =
(2⇡/�

↵↵

0(E))

k2(2i+ 1)(2I + 1)

X

s,s

0

B
L

(↵s,↵0s0;E).

(97)

The equation for �
↵↵

0 di↵ers from that for �
cc

0 because
of the additional sums over spins, J ’s and `’s.

V. USEFUL APPROXIMATIONS OF THE R
MATRIX

A. Single level Breit-Wigner (SLBW)

Assume only one level retained, all others ignored. So,
for one level we have

(A�1)
�µ

! (E
0

� E)�
X

c

L0

c

�2

c

⌘ E
0

+�� E � i�/2 (98)
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, sL) is a Racah coe�cient.

I use the notation
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= {↵`sJ} =
P
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P
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P
J

. ENDF
uses the notation

P
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=
P
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P
s

, so ENDF needs an extra
sum over J
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and J
2

.
There are a lot of angular momenta in the above equa-

tions. Let’s try to explain them.

• ↵ is the partition of the compound system into re-
action partners (“defined” above using real reaction
theory)

• J , the total angular momentum in units of ~

• `, the orbital momentum in units of ~

• s, the channel spin in units of ~

and these satisfy the triangle relations

~J = ~̀+ ~s so |`� s|  J  `+ s (88)

~s = ~I +~i so |I � i|  s  I + i (89)

An aside from Toshihiko [54]:

In fact you can get rid of the ground state
spin I from the BB formula, using the com-
pleteness of Clebsh-Gordan coe�cient. The
result is

B
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=
⇡
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1

2(2L+ 1)

X
Z2<(1� S)(1� S)⇤ (90)

This is why the optical model scattering angu-
lar distribution is independent of the ground
state spin. (well, the optical model does not
have any target spins anyway).

In practice want the angular distribution for outgoing
neutrons:

P (µ|E) =
X

L

P
L

(µ)⇧
L

(E) (91)

where µ = cos ✓ and P
L

(µ) are Legendre polynomi-
als. Because P (µ|E) is a probability distribution in µ,

R
P (µ|E)dµ = 1, implying ⇧

0

= 1. Also note, because
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1

(µ) = µ, µ̄(E) = ⇧
1

(E). To get this,
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Here we used azimuthal symmetry to get rid of ' angular
dependence. So,
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The equation for �
↵↵

0 di↵ers from that for �
cc

0 because
of the additional sums over spins, J ’s and `’s.

V. USEFUL APPROXIMATIONS OF THE R
MATRIX

A. Single level Breit-Wigner (SLBW)

Assume only one level retained, all others ignored. So,
for one level we have
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We can get MLBW angular 
distributions!!!

 For the MLBW format, we have such a thing:

 The MLBW formalism in ENDF is “broken”, but it’s 
elastic channel and the collision matrix are not

15

A Single level Breit-Wigner (SLBW) V USEFUL APPROXIMATIONS OF THE R MATRIX

In other words, the so-called level matrix has one measly
level in it! The level shift � and total width � =

P
c

�
c

are both real and the energy dependencies are explicit
and well known.

With these choices, the R matrix for one level is

R
cc

0 =
�
c

�
c

0

E
0

� E
(99)

but for the one level only. Got that? Just one level. I
want to emphasize that. You know. That one level thing.
OK? (can add in background R matrix, if needed) and
the scattering matrix U for one level simplifies to

U
cc

0 = e�i('c+'c0 )

 
�
cc

0 +
i�1/2

c

�1/2

c

0

E
0

+�� E � i�/2

!

(100)

where the total width � =
P

c

�
c

for one level.
With these, the cross sections are

�
c

=4⇡�2
c

g
c

⇢
sin2 '

c

+
�
c

�
( (x) cos(2') + �(x) sin(2'

c

))

�
(101)

�
cc

0 =4⇡�2
c

g
c

�
c

�
c

0

�
 (x) for c 6= c0 (102)

�
cc

=�
c

�
X

c

0 6=c

�
cc

0 (103)

With x = 2(E � E0
R

)/� and  and � are the profile
functions given above in Eqs. (64) and (65). Note, the U
for individual levels is unitary (by construction, but see
proof in appendix ??).

In the limit of one isolated resonance, all approxima-
tions to the R matrix (and the R matrix itself) reduce
to the SLBW case. In Fig. 12 we can get a feeling
for the anatomy of a resonance. The symmetrical part
(controlled by the profile function  ) is the resonance-
resonance term. The smooth background is purely po-
tential scattering. The asymmetric part is a result of
potential-resonance interference (controlled by the pro-
file function �).

B. Multi level Breit-Wigner (MLBW)

This is an improvement on the SLBW approach, be-
cause it does allow interference between resonances.

In the MLBW approximation, all o↵-diagonal elements
of A�1 ignored. So,

(A�1)
�µ

= (E
�

� E �
X

c

L0

c

�2
µc

)�
�µ

⌘ (E
�

+�
�

� E � i�
�

/2)�
�µ

(104)

The level shift �
�

and total width �
�

=
P

c

�
�c

are both
real and the energy dependencies are explicit and well

FIG. 12. Typical isolated resonance, taken from Fig. 11
of Ref. [7]. Here �c is the full cross section of the channel,
the potential scattering for channel c is �p,c and the minimum
value of the cross section is �c

� �p,c. The profile functions  
and � are also shown.

known and usually arranged to be the same as SLBW
(at least that’s what ENDF does).
With these choices, the R matrix is

R
cc

0 =
X

�

�
�c

�
�c

0

E
�

� E
(105)

(to add in background R matrix, if needed) and the scat-
tering matrix U simplifies to

U
cc

0 = e�i('c+'c0 )

 
�
cc

0 +
X
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i�1/2

�c

�1/2

�c

0

E
�

+�
�

� E � i�
�

/2

!

(106)

where the total width �
�

=
P

c

�
�c

.
According to ENDF, hearsay, and Fröhner, MLBW is

not unitary. I should really check it. Fröhner demon-
strates this by showing that the sum of the parts of the
total cross section does not equal the total cross section
computed using the collision matrix.
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OK then, what does it look like?
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The angular distribution directly from 
ENDF MLBW parameters
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dσel/dΩ =(4π)-1 ∑LσLPL(μ)
σ L
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Try it on a more popular isotope: 90Zr
distribution of level widths
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Total widths from the ENDF/B-VII.1 90Zr evaluation
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Try it on a more popular isotope: 90Zr
angular distribution
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90Zr(n,el) Angular Distribution, expanded in Legendre polynomials
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Try it on a more popular isotope: 90Zr
zoom in on angular distribution
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dσel/dΩ =(4π)-1 ∑LσLPL(μ) 
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What next?

 Finish coding hooks in Fudge
 Get the distributions into an ENDF file (e.g. 90Zr)
 Compare to natZr µ
 Try it out in a benchmark
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