Optical Model Potential in Rare-earth Region

G. P. A. Nobre*, A. Palumbo, M. Herman, D. Brown and S. Hoblit NNDC, Brookhaven National Laboratory

> F. S. Dietrich Lawrence Livermore National Laboratory

a passion for discovery

Nuclear Data Week at BNL, USNDP and CSEWG meetings November 18-22, 2013

*gnobre@bnl.gov

Motivation

- Why seek an optical potential for this region?
 - Lack of existing regional OP's for deformed nuclei
 - Recent work* shows scattering from highly deformed nuclei is near adiabatic limit

 deforming a spherical global potential may be suitable with only minor modifications

We deform the Koning-**Delaroche spherical global** potential and couple g.s. rotational band

global OP considering all studied nuclei as rigid * Phys. Rev. C 85 (2012) 044611 § J. Nucl. Sci. Tech. 44 (2007) 838

Initial calculations done in rare-earths region

- CC calculations deforming spherical Koning-Delaroche OP
 - Full imaginary part of KD
 - Adiabatic limit
 - Experimental deformations
 - Coupled to g.s. rotational band

$$R(Q) = R_0 \overset{\mathcal{R}}{\underset{\dot{e}}{\varsigma}} 1 + \overset{\dot{a}}{\underset{\prime}{\delta}} b_{\prime} Y_{\prime,0}(Q) \overset{\ddot{o}}{\underset{\emptyset}{\varepsilon}}$$

- Used EMPIRE code (Direct reaction part calculated by ECIS)
- 34 nuclei: ^{162,163,164}Dy, ^{166,167,168,170}Er, ¹⁵³Eu, ^{155,156,157,158,160}Gd, ^{177,178,179,180}Hf, ¹⁶⁵Ho, ^{175,176}Lu, ^{152,154}Sm, ¹⁸¹Ta, ¹⁵⁹Tb, ¹⁶⁹Tm, ^{182,183,184,186}W, ^{171,172,173,174,176}Yb
- Tested convergence to the number of channels and correction for volume conservation
- Initially compared direct-reaction observables; then extended approach to test effect on compound nucleus quantities

Comparison between spherical and CC: Total cross sections

Spherical approach fails at low energy and its shape is often in disagreement with experimental data, while deforming KD potential provides a good description of the observed total cross sections

Elastic cross section (shape + compound)

Total inelastic

Clear improvement on the agreement to total inelastic experimental data

Capture cross sections

Our model gives a very good description of capture cross sections

When deforming the potential, the volume should be conserved

- Bang & Vaagen§: $R_0' = R_0 \left(1 a^3 b_1^2 / 4\rho\right)$
- For ¹⁸⁴W: $β_2$ =0.236 □ Δ < 0.5%
- Most deformed: ¹⁶⁰Gd: β_2 =0.353 \Box Δ < 1%

Angular distributions: Gd, Ho, W

- More detailed analysis on the experimental data sets
- Some elastic ang. dist. data actually contained inelastics
- Ensured convergence regarding number of rotational channels

^{158, 160}Gd Angular distributions

Good agreement with experimental data obtained by the model

¹⁶⁵Ho (Quasi-)elastic angular distributions

¹⁶⁵Ho "Quasi-elastic" angular distributions

¹⁸²W – Elastic angular distributions

182W – 2⁺ Inelastic ang. dist. (E₂⁺=0.100MeV)

¹⁸²W – 4⁺ Inelastic ang. dist. (E₄⁺=0.329MeV)

¹⁸⁴W – Elastic and inelastic angular distributions

¹⁸⁶W – Elastic and inelastic angular distributions

The fact that deforming KD allows to consistently describe observed elastic and inelastic angular distributions remarkably well is very supportive of the model and of the adiabatic approximation.

Conclusion

- We deformed spherical KD potential in CC calculations to describe statically-deformed nuclei
 - No free parameters (experimental deformations)
 - Radius correction gives (small but) noticeable effect
- This approach provides provides remarkable results for
 - Total, elastic, inelastic cross sections
 - Elastic and inelastic angular distributions
- Improvement of capture cross sections, in particular their shape

This simple method is a good, consistent and general step towards an OP capable of fully describing the rare-earth region, filling the current lack in this important region.

19

Angle-integrated inelastic cross sections

Brookhaven Science Associates

Convergence on number of channels

Sensitivity to deformation

Deformation uncertainty relates to cross-section uncertainty

