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Overview
* Goal: Develop methods for generating covariance data of S(a,b)
— In anticipation of the RPI data for H,0 and Si0, (Si) from the SNS

* General approach:
1. Define model T as a function of some parameters P
2. Fitmodel T to data to obtain covariance matrix M of parameters P

3. Construct covariance of S(a,b) fromM asC=SMS
Where S=0T(P)/dP s the sensitivity matrix of model T

» Various models T being considered:

— Addressing various levels of physical models
» Various approximations: from DFT to MD to free gas,
 Some assumptions revisited (e.g. form of the scattering w.f.)

— Ab intio models more computationally intensive

* MADNESS Computational framework (R&D 100, SciDAC)

— May provide novel computational approaches and
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General consideration
* The form of the scattering function assumed
— Plane wave + scattered wave
— Can we estimate the magnitude of ensuing error? (assumed to be small)

* The low-energy (< 5 eV) neutron-nucleus scattering determined
by the scattering length

* First-order Born approximation

— Does not require a delta-function interaction;
 Woods-Saxon is more realistic
* But delta-function is likely a good approximation since size(nuclei) << size(atoms)

* This leads to expressions for S(a,b) in terms of pair-wise
correlation functions

— Delineates neutron-scattering from material properties PCF
— —>PCF could be computed by e.g. MD or DFT
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1. Molecular Dynamics (MD)

 MD Method:

— assumes a parameterized interaction potential (e.g. Lennard-Jones)
— Uses Newton’s equation to evolve the many-body system

— Then computes PCFs to get S(a,b) and structure factors

— Faster but less accurate than more ab initio methods like DFT

— Interaction parameters fitted to (usually) structure factors (SF)

— The SF is the 0-th moment of S(q,w)

— But parameter uncertainty or covariance is generally not provided

» Several established MD codes available
— GROMACS
— NAMD

— http:/len.wikipedia.org/wiki/List_of_software_for_molecular_mechanics_modeling
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2. Density Functional Theory

* Codes:
— BigDFT, MADNESS (more later)

— http://en.wikipedia.org/wiki/
List_of_quantum_chemistry_and_solid_state_physics_software

« Water is still not fully understood

— Discrepancies between data an theory persist
» structure factor, pairwise correlation function

— Several recent Ph.D. thesis on water (active field)
 ~1,000’s of atoms/molecules
 More accurate than MD
» DFT computations are used to fit MD interaction parameters
* A candidate framework for S(a,b) covariances
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3. Horace platform

* One of the two preferred methods for data reduction and analysis
— at the SNS Sequoiah
— double diff. (angle, energy) cross section is reduced to S(q,w)

— Built-in function for parameter fitting to reduced data S(q,w)
 Returns model parameters, their uncertainties, and the correlation matrix
 One can compute the model covariance matrix of the S(qg,w)

* An established platform
— Works with MATLAB out of the box
— Used in multitude of advanced papers
— Downloadable from http://horace.isis.rl.ac.uk
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What iIs MADNESS?

* A general purpose numerical environment for
reliable and fast scientific simulation

— Chemistry, nuclear physics, atomic physics,
material science, nanoscience, fluidics ...

* A general purpose parallel programming
environment designed for the peta/exa-scales

— Standard C++ with concepts from Cilk, Charm++,
Intel TBB, HPCS languages

— Compatible by design with existing applications
— Runs on the world’s largest computers



What is MADNESS?

 MADNESS is a framework M

— Like NWChem, PETSc, ... _
Parallel Runtime
e Frameworks

— Increase productivity; hide complexity
— Interface disciplines; capture knowledge
— Open HPC to a wider community

— Long-lived, communal projects with
broad impact

— 2011 R&D 100




Why MADNESS?

« MADNESS addresses many of the sources of
complexity that constrain our HPC ambitions
— Science, physics, theory, ...

e Constantly evolving but can take years to implement
— Scalable algorithms and math
* Need rapid deployment of the latest and greatest

— Software

e Crude parallel programming tools with explicit expression
and management of concurrency and data

— Hardware
» Millions of cores with deep memory hierarchy



Why MADNESS?

 Reduces S/W complexity

— MATLAB-like level of composition of scientific
problems with guaranteed speed and precision

— Programmer not responsible for managing
dependencies, scheduling, or placement

 Reduces numerical complexity
— Solution of integral not differential equations

— Framework makes latest techniques in applied
math and physics available to wide audience
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* Nuclel & neutron matter
e Cold Fermions
- Hartree-Fock-Bogliobulovie
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* Gamow states

Imaginary part of the seventh eigen function
two-well Wood-Saxon potential



An alternative view of fitting methods

» Wavelets in the context of image processing give an alternative
vista for fitting methods

— It places Bayes method into a broader context
« Unrealistically small uncertainties

— Relative to the Minimax alternative

— The optimal fitting)is likely in between the two

(D,

Bayes

Minimax

Qc

r(D.f))

Co

Figure 11.3: At the Bayes point, a hyperplane defined by the prior 7 is tangent to the risk set R.
The least favorable prior 7 defines a hyperplane that is tangential to R at the minimax point.
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Conclusions and Outlook

» Various approaches for computing S(a,b) outlined
* Prospect of using MADNESS wavelet framework explored
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Coupled channels capture

* Neutron-nucleus scatterings require coupled- channels
calculations.

— Rotation models for all known band, even beyond
— Vibrational models for 1- or 2-phonon excitations

* For consistency, should include these couplings also in the final
neutron bound states.
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Gamow Shell Model CC Neutron Capture

Motivated by the need for neutron capture c.s. on unstable Sn-130
— TORUS in support of HRIBF experiment Sn-130(d,p) (Kozub et al.)

Collaboration with Nicolas Michel (MSU) et al.
ORNL Small Seed Money proposal (synergistic w/ TORUS):

The amplitude for the capture of an incoming nucleon of energy F, in a channel labeled by a
composite index “c” relative to an (A-1) target nucleus is expressed via the T-matrix to the
first-order in the electro-magnetic operator H, [1]:

doj. 1 2m E7

dE,dQy — ¢me h (he)?

T4c|*6(E — Ef)

A
Tye = (U5V|H, | D)

“GSM-CC” incoming channel wave functions |®.)

GSM final bound levels of the (A) nucleus \\IJ(A)>

Jaganathen Y, Michel N, Ploszajczak M 2013 arXiv:1210.1927v1 [nucl-th]
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Conclusions and Outlook

* New coupled-channel approaches to capture

— Fresco: coupling to 2+ states in incoming and outgoing channels
« Self-consistent approach to capture on deformed nuclei
* Apply to the chain of even Ca isotopes

— Gamow-Shell Model Coupled Channels

» Model more complex configurations in the capture process 2p-1h, ...
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