Scattering Function S(a,b) Covariance

Goran Arbanas, ORNL Luiz C. Leal, ORNL George Fann, ORNL Micheal E. Dunn, ORNL Mark L. Williams, ORNL

Direct Capture Reactions

Goran Arbanas, ORNL Ian Thompson, LLNL Frank Dietrich, LLNL (TORUS Topical Collaboration)

Nuclear Data Week; USNDP Reaction Modeling November 18-22, 2013, BNL, NY

AK RIDGE NATIONAL LABORAT

Overview

- Goal: Develop methods for generating covariance data of S(a,b)
 - In anticipation of the RPI data for H_20 and SiO_2 (Si) from the SNS
- General approach:
 - 1. Define model T as a function of some parameters P
 - 2. Fit model T to data to obtain covariance matrix M of parameters P
 - 3. Construct covariance of S(a,b) from M as C = S M S
 - Where $S = \partial T(P) / \partial P$ is the sensitivity matrix of model T
- Various models T being considered:
 - Addressing various levels of physical models
 - Various approximations: from DFT to MD to free gas,
 - Some assumptions revisited (e.g. form of the scattering w.f.)
 - Ab intio models more computationally intensive

MADNESS Computational framework (R&D 100, SciDAC)

2 Presentation many provide novel computational approaches and msights NATIONAL LABORATORY

General consideration

- The form of the scattering function assumed
 - Plane wave + scattered wave
 - Can we estimate the magnitude of ensuing error? (assumed to be small)
- The low-energy (< 5 eV) neutron-nucleus scattering determined by the scattering length
- First-order Born approximation
 - Does not require a delta-function interaction;
 - Woods-Saxon is more realistic
 - But delta-function is likely a good approximation since size(nuclei) << size(atoms)
- This leads to expressions for S(a,b) in terms of pair-wise correlation functions
 - Delineates neutron-scattering from material properties PCF
 - \rightarrow PCF could be computed by e.g. MD or DFT

• What is an efficient path to S(a,b) covariance? OAK RIDGE NATIONAL LABORATOR

1. Molecular Dynamics (MD)

- MD Method:
 - assumes a parameterized interaction potential (e.g. Lennard-Jones)
 - Uses Newton's equation to evolve the many-body system
 - Then computes PCFs to get S(a,b) and structure factors
 - Faster but less accurate than more ab initio methods like DFT
 - Interaction parameters fitted to (usually) structure factors (SF)
 - The SF is the 0-th moment of S(q,w)
 - But parameter uncertainty or covariance is generally not provided
- Several established MD codes available
 - GROMACS
 - NAMD
 - http://en.wikipedia.org/wiki/List_of_software_for_molecular_mechanics_modeling

2. Density Functional Theory

Codes:

- BigDFT, MADNESS (more later)
- http://en.wikipedia.org/wiki/
 List_of_quantum_chemistry_and_solid_state_physics_software
- Water is still not fully understood
 - Discrepancies between data an theory persist
 - structure factor, pairwise correlation function
 - Several recent Ph.D. thesis on water (active field)
- ~1,000's of atoms/molecules
- More accurate than MD
- DFT computations are used to fit MD interaction parameters
- A candidate framework for S(a,b) covariances

3. Horace platform

- One of the two preferred methods for data reduction and analysis
 - at the SNS Sequoiah
 - double diff. (angle, energy) cross section is reduced to $S(\mathbf{q},\omega)$
 - Built-in function for parameter fitting to reduced data $S(\mathbf{q},\omega)$
 - Returns model parameters, their uncertainties, and the correlation matrix
 - One can compute the model covariance matrix of the $S(q,\omega)$
- An established platform
 - Works with MATLAB out of the box
 - Used in multitude of advanced papers
 - Downloadable from http://horace.isis.rl.ac.uk

MADNESS An Introduction

Multiresolution Adaptive Numerical Scientific Simulation

<u>George I. Fann</u>¹ ¹Oak Ridge National Laboratory

> **Robert Harrison** Stony Brook University

Gregory Beylkin University of Colorado at Boulder

fanngi@ornl.edu

What is MADNESS?

- A general purpose numerical environment for reliable and fast scientific simulation
 - Chemistry, nuclear physics, atomic physics, material science, nanoscience, fluidics ...
- A general purpose parallel programming environment designed for the peta/exa-scales
 - Standard C++ with concepts from Cilk, Charm++, Intel TBB, HPCS languages
 - Compatible by design with existing applications
 - Runs on the *world's* largest computers

What is MADNESS?

• MADNESS is a framework – Like NWChem, PETSc, ...

Applications
Math & Numerics
Parallel Runtime

- Frameworks
 - Increase productivity; hide complexity
 - Interface disciplines; capture knowledge
 - Open HPC to a wider community
 - Long-lived, communal projects with broad impact
 - 2011 R&D 100

Why MADNESS?

- MADNESS addresses many of the sources of complexity that constrain our HPC ambitions
 - Science, physics, theory, ...
 - Constantly evolving but can take years to implement
 - Scalable algorithms and math
 - Need rapid deployment of the latest and greatest
 - Software
 - Crude parallel programming tools with explicit expression and management of concurrency and data
 - Hardware
 - Millions of cores with deep memory hierarchy

Why MADNESS?

- Reduces S/W complexity
 - MATLAB-like level of composition of scientific problems with guaranteed speed and precision
 - Programmer not responsible for managing dependencies, scheduling, or placement
- Reduces numerical complexity
 - Solution of integral not differential equations
 - Framework makes latest techniques in applied math and physics available to wide audience

Nuclear physics

J. Pei, G.I. Fann, W. Nazarewicz UT/ORNL

- DOE UNDEF/NUCLEI
- Nuclei & neutron matter
- Cold Fermions
- Hartree-Fock-Bogliobulov
- Spinors
- Gamow states

Imaginary part of the seventh eigen function two-well Wood-Saxon potential

An alternative view of fitting methods

- Wavelets in the context of image processing give an alternative vista for fitting methods
 - It places Bayes method into a broader context
 - Unrealistically small uncertainties
 - Relative to the Minimax alternative
 - The optimal fitting is likely in between the two

Figure 11.3: At the Bayes point, a hyperplane defined by the prior π is tangent to the risk set R. The least favorable prior τ defines a hyperplane that is tangential to R at the minimax point.

Conclusions and Outlook

- Various approaches for computing S(a,b) outlined
- Prospect of using MADNESS wavelet framework explored

Scattering Function S(a,b) Covariance

Goran Arbanas, ORNL Luiz C. Leal, ORNL George Fann, ORNL Micheal E. Dunn, ORNL Mark L. Williams, ORNL

Direct Nuclear Reactions

Goran Arbanas, ORNL Ian Thompson, LLNL Frank Dietrich, LLNL (TORUS Topical Collaboration)

Nuclear Data Week; USNDP Reaction Modelling November 18-22, 2013, BNL, NY

Coupled channels capture

- Neutron-nucleus scatterings require coupled- channels calculations.
 - Rotation models for all known band, even beyond
 - Vibrational models for 1- or 2-phonon excitations
- For consistency, should include these couplings also in the final neutron bound states.

Gamow Shell Model CC Neutron Capture

- Motivated by the need for neutron capture c.s. on unstable Sn-130

 TORUS in support of HRIBF experiment Sn-130(d,p) (Kozub et al.)
- Collaboration with Nicolas Michel (MSU) et al.
- ORNL Small Seed Money proposal (synergistic w/ TORUS):

The amplitude for the capture of an incoming nucleon of energy E_n in a channel labeled by a composite index "c" relative to an (A-1) target nucleus is expressed via the T-matrix to the first-order in the electro-magnetic operator H_{γ} [1]:

$$\frac{d\sigma_{fc}}{dE_{\gamma}d\Omega_{\gamma}} = \frac{1}{\phi_{\rm inc}} \frac{2\pi}{\hbar} \frac{E_{\gamma}^2}{(\hbar c)^3} |T_{fc}|^2 \delta(E - E_f)$$
$$T_{fc} = \langle \Psi_f^{(A)} | H_{\gamma} | \Phi_c \rangle$$

"GSM-CC" incoming channel wave functions $|\Phi_c\rangle$ GSM final bound levels of the (A) nucleus $|\Psi^{(A)}\rangle$

Jaganathen Y, Michel N, Płoszajczak M 2013 arXiv:1210.1927v1 [nucl-th]

Conclusions and Outlook

- New coupled-channel approaches to capture
 - Fresco: coupling to 2+ states in incoming and outgoing channels
 - Self-consistent approach to capture on deformed nuclei
 - Apply to the chain of even Ca isotopes
 - Gamow-Shell Model Coupled Channels
 - Model more complex configurations in the capture process 2p-1h, ...

