Integral Benchmark Experiments in the Inverse Sensitivity/ Uncertainty Computations

Goran Arbanas (ORNL) Bassam A. Khuwaileh (NCSU) Mark L. Williams (ORNL) Luiz C. Leal (ORNL) Michael E. Dunn (ORNL) Hany S. Abdel-khalik (NCSU)

Nuclear Data Week; CSEWG November 18-22, 2013, BNL, NY

AGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERG

Inverse Sensitivity Uncertainty (IS/U) Intro

- Definition: Determine target accuracies of nuclear data needed to model applications within prescribed tolerances.
- Why? Nuclear data measurements are expensive
 - between \$ ~400,000 and ~1,000,000
- \Rightarrow Measurements must be carefully chosen and prioritized
 - They are application-dependent (e.g. which nuclear reactor design?)
 - Presently guided by expert opinion
- A poorly designed experiment may miss the mark
 - Example: a generic burnup credit cask benchmark experiment

Applications

- Light Water Reactors
- Fast neutron reactors
- Spent Nuclear Fuel
 - Reprocessing
 - Transport
 - Disposal
- Generally: Complex systems
 - Difficult to build or prototype
 - Burden on modeling
 - Uncertainties are important
 - Application modeling uses:
 - Differential data
 - Integral data

Responses:

 Neutron multiplication factor, cycle length, power distribution, reaction rate ratio, material worth, radiation dose, etc. CAK RIDGE NATIONAL LABORATORY

Differential Data ("microscopic")

Integral data ("macroscopic")

- Various (sub)critical assemblies
 - Macroscopic objects
 - macroscopic quantities measured
 - E.g. neutron multiplication factor
 - Relatively simple setups
 - Highly accurate measurements
- Provide constraints:
 - Neutron transport simulation using differential cross sections ought to be consistent with measured integral data.
- Very expensive: ~ \$ million
 - 1,000's of them measured

LEU-COMP-THERM-001 is used in this work (photos from IHCSBE 2008)

Inverse S/U Use Case

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

6 Presentation name

Inverse S/U: Definitions

• A nuclear application design specifies maximum allowed uncertainties on performance parameters ("responses")

- e.g. the multiplicity factor and its tolerance

 $R \pm \Delta R$

 Neutron transport using existing cross section uncertainties often leads to an application response uncertainty greater than the maximum allowed, i.e.:

$$\sigma_0 \pm \Delta \sigma_0 \Rightarrow R_0 \pm \Delta R_0 \text{ where } \Delta R_0 > \Delta R$$

 Inverse S/U: What set of improved data would lower the response uncertainty below the specified tolerance?

AK RIDGE NATIONAL LAB

- While minimizing the cost of data measurements (to be defined).

 $\sigma' \pm \Delta \sigma' \Rightarrow R' \pm \Delta R' \le \Delta R \text{ for min}(\text{cost}[\Delta \sigma'])$

Inverse S/U Math

- Given a desired responses ± tolerances:
- and the existing data ± uncertainties:

 $R \pm \Delta R$ $\sigma_0 \pm \Delta \sigma_0$

• Minimize the *cost* of acquiring improved data uncertainties that yield a response uncertainty within tolerance:

 $\min{\{Cost[\Delta\sigma]\}}$ such that

$$S(\Delta\sigma)^2 S^T \le (\Delta R)^2$$
$$S = \frac{\delta R(x)}{\delta\sigma} \bigg|_{\sigma = \sigma_0}$$

• This a constrained optimization problem

- MINCON: open source subroutine is used by MATLAB and DAKOTA

Numerical Approach

- We parameterize the uncertainties via the covariance mat. C:
 - The diagonal of C are the extant diff. cross section σ_0 variances
 - The diagonal of C' are the variances $(\Delta \sigma)^2$ to be optimized by the IS/U

$$C'_{ij} = x_i C_{ij} x_j$$

• *x*'s: parameters varied between 0.0 and 1.0, so that its cost:

$$\operatorname{cost}[\mathbf{C'}] = \sum_{i} \frac{W_i}{C'_{ii}} = \sum_{i} \frac{W_i}{x_i C_{ii} x_i}$$

 w_i = 1 for all *i*; for all (44) groups and for all cross sections

• ... is minimized, while the constraint:

diag
$$[\mathbf{S}_{\mathbf{A}}\mathbf{C'S}_{\mathbf{A}}^{\mathsf{T}}] \leq \operatorname{var}(\mathbf{R})$$
 ...is satisfied.

Application sensitivity profile.

User defined application response variance.

Use of Integral Benchmark Exp's.

In this work we minimize the Cost(DIFFERENTIAL)

 $\mathbf{C}'' = \mathbf{C}' - \mathbf{C}' \mathbf{S}_{b}^{T} \mathbf{D}^{-1} \mathbf{S}_{b}^{T} \mathbf{C}'$

- We USE the existing INTEGRAL data to inform DIFF. data needs
- Via the result of the Generalized Linear Least-Squares Method
 - That quantifies the effect of INT. measurement unc's. on DIFF. data unc's.

Using C" instead of C' modifies (or eases) the constraint:

$$diag[S_aC''S_a^T] \le var(R) \longleftarrow$$
since the modified
constraint uses C'
instead of C'

Because of the minus sign, C' can be larger than before

- A larger C' satisfies this constraint
 - A larger C' means larger diff. data unc.' \rightarrow easier to measure.
 - A larger C' \rightarrow lower cost

Most helpful IBEs have sensitivities similar to the application

General results

- IS/U results obtained with integral benchmark experiments:
 - Afford larger DIFF. data uncertainties \rightarrow lower cost of DIFF. data
 - For PWR fuel array overall 6-fold decrease in data cost was achieved.
 - $\Delta k_{\text{eff}} = 0.0031$ for extant data; we desire $\Delta k_{\text{eff}} = 0.001$, var(k_{eff})=10⁻⁶
 - Leads to the same k_{eff} variance of the PWR fuel array

Table 1. Summary of the 15/0Q results					
	w/o Benchmark	w/Benchmark			
Cost (arb.)	53.3	8.6			
# iterations	311	186			
$var(k_{eff})$	1.0E-06	1.0E-06			

Table I. Summary of the IS/UQ results

- Results verified by initiating with different initial values
- Neutron multiplication factor, k_{eff} , of a PWR fuel-rods array
 - The IBE we use in this work is water-moderated UO₂ fuel rods in 2.032-cm square-pitched arrays (LEU-COMP-THERM-001). This IBE was chosen because of its similarity to the PWR fuel-rods.

Context for Interpreting the Results

- Diff. data uncertainties are limited by experimental methods
 - Some data already at the present-day limits of exp. precision
 - Uncertainties required by IS/U lower than these may be unrealistic

Table II. Uncertainties of the present-day state-of-the-art measurements for various cross sections

Reaction	MT	Min. Rel. Uncertainty
Fission	18	0.7%
Capture	102	2%
Neutron yields	452	0.3%
Elastic scattering	2	2%

44-group structure energy boundaries

- Groups 1-44 spans 20*10⁶ eV to 1*10⁻⁵ eV

20.0E6	8.1873E6	6.434E6	4.8E6	3E3	2.479E6
2.354E6	1.85E6	1.4E6	9E5	4E5	1E5
2.5E4	1.7E4	3E3	5.5E2	1E2	3E1
1E1	8.1E0	6E0	4.75E0	3E0	1.77E0
1E0	6.25E-1	4E-1	3.75E-1	3.5E-1	3.25E-1
2.75E-1	2.5E-1	2.25E-1	2E-1	1.5E-1	1E-1
0.7E-2	5E-2	4E-2	3E-2	2.53E-2	1E-2
7.5E-3	3E-3	1E-5			

• The following slides will present DIFF. data uncertainties

For various cross section as a function of energy group (1-44)

Context cont'd.

- We use the extant 44-group covariance data (SCALE)
- We compute Sensitivity Data Format files (TSUNAMI)
 - For the application and the integral benchmark experiments
 - Takes into account the implicit self-shielding (B. Khuwaileh's et al. ANS Winter Mtg. '13)
 - Also in 44-group structure
- We use standard subroutine for constrained minimization
 - It uses derivatives of the cost function and the constraint
 - We compute derivatives using analytical expressions
 - This improves performance over the numerical evaluation of derivatives

Inverse S/U Results

- Required diff. data uncertainties
 - w/ integral benchmarks are not as small as w/o them

Required relative uncertainties (benchmark vs. no benchmark) for neutron capture cross section (i.e. MT=102) on U-235 (left) and on U-238 (right). The plots show that inclusion of a benchmark affords less stringent uncertainties. Such uncertainties are more realistically achievable, especially when the extant uncertainties are already near or below the high-precision uncertainties listed in Table II. This happens here in groups 15-44.

Inverse S/U Results cont'd.

• Neutron yield: average number of fission neutrons, "v-bar"

For U-235 neutron yield (MT=452) extant uncertainties (green) are already near (or smaller than) the ENDF guidance value of 0.3%. Here too, the IS/U with integral benchmark experiment (IBE) (red) require uncertainties that are not as small as those w/o IBEs (blue).

Summary and Outlook:

- A new application of the Inverse Senstivity/Uncertainty to
 - cost-optimized prioritization of nuclear data measurements
 - Demonstrated the benefit of using integral benchmarks in the IS/U
 - w/o IBE DIFF. data uncertainties may be unachievable, and vice versa.
- Outlook
 - Formalism sufficiently general to minimize the TOTAL cost of data
 - Of differential data, and integral benchmark experiments (IBEs), simultaneously
 - It may be extended to optimize and design IBEs
- IS/U capability can be used for various nuclear fuel cycle applications

IS/U Results: Fission

- The IS/U uncertainties for fission are somewhat affected
 - For fission too IBEs allow greater uncertainty

IS/U Results: Elastic

Only high energy groups of U-238 affected

- There too IS/U uncertainties are slightly larger when IBE used

IS/U Results: Capture

- Large effect for Zr-40; small for U-234, H-1; none for O-16
 - Using IBEs allows uncertainties larger than w/o IBEs.

10

Ő

5

10

30

Energy Group

35

40

ANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

19 Presentation name

0 Leces 20000 000

20

Energy Group

15

25

30

35

40

45

IS/U Generalization to Integral Data

- The formalism can be used to minimize the total cost
 - Total Cost(DATA) = Cost(DIFFERENTIAL) + Cost(INTEGRAL)
 - Generally Cost (INT.) << Cost(DIFF.)
 - Depends on whether an IBE experiment is still available to be re-measured at a higher precision
- It may be used to design or optimize INT. benchmark exp's.
 - By e.g. maximizing the similarity of sensitivity profiles of INT.
 benchmark exp. to that of the nuclear application considered.

Application to Integral Benchmark Exp.

- a generic burnup credit cask model
 - In retrospect, a thinner foil of Rh-103 was needed to make it more sensitive to Rh-103 cross section

Figure 4. View of the Critical Assembly in the Reactor Room.

Figure 1. Overall Concept of the Critical Assembly.

