Recent EGAF Thermal Neutron Cross Section Measurements

R.B. Firestone Lawrence Berkeley National Laboratory

Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis

 $\kappa 0(E\gamma) = \kappa \zeta(E\gamma) / \kappa H(2223)$ = [σγζ(Eγ) / Aρ(Z)] ([σγH(2223)/ Aρ(H)] = 3.03 ξ [σγζ(Eγ) / Aρ(Z)]

Evaluated Gamma-ray Activation File (EGAF)

1999-2004: IAEA CRP on "Development of a Database for Prompt Gamma-ray Neutron Activation Analysis"

- Evaluation of thermal neutron capture prompt γ-ray cross sections for all elements with Z=1-83,90,92 except He and Pm.
- Measurements perfomed at the Budapest Reactor
- Determined prompt and delayed E_{γ}, σ_{γ} , σ_{0} , level schemes and S_n

2004: Published *Handbook of Prompt Gamma Activation Analysis,* Kluwer Publishers.

2007: Published Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis, IAEA STI/PUB/1263. **>2007:** Continued (n,γ) measurements on enriched isotopic targets at the Budapest and FRM-II (Garching) reactors.

Measurements

HPGe: Compton suppressed γ-ray spectrum for CCl₄ Efficiency: <1% for E=0.5-6 MeV, <3% for 6-10 MeV

The Budapest neutron beam is a pure cold/thermal beam with no fast component!

Standardization

Thermal γ -ray cross sections were determined using internal standards of known composition. For 1/v isotopes this measurement is independent of neutron energy. For non-1/v isotopes g-factor corrections were made.

- Stoichiometric compounds containing elements with well-known cross sections: B, H, N, Cl, S, Na, Ti, Au
 e.g. KCl, (CH₂)_n, Pb(NO₃)₂, GdB₆, Tl₂SO₄
- 2. Homogenous mixtures

Aqueous (H₂O) or acid (20% HCl) solutions, mixed powders (TiO₂)

3. Activation products with well-known decay P_{γ} ¹⁹F, ²⁸Al, ¹⁰⁰Tc, ²³⁵U

Measurements were performed on all elemental targets with

Z=1-83, 92 except for He and Pm

and on the selected radioactive targets ⁹⁹Tc, and ¹²⁹I.

Determination of σ_0

For **low-Z** complete (n,γ) decay schemes are measured in EGAF and

 $\sigma_0 = \Sigma \sigma_{\gamma}(GS) = \Sigma \sigma_{\gamma}(CS)$

For **high-Z**, when the (n,γ) continuum feeding is significant,

 $\sigma_0 = \Sigma \sigma_{\gamma} (GS)_{E < E_{crit}}^{EGAF} + \Sigma \sigma_{\gamma} (GS)_{E > E_{crit}}^{cont}$ E_{crit} is the excitation energy up to which the level scheme is complete.

We use the DICEBOX* statistical model code to calculate continuum feeding to the GS.

- DICEBOX calculates multiple decay scheme "realizations" to estimate inherent statistical variations.
- Numerous photon strength and level density models are available.
- Calculated feeding to excited states below Ecrit is normalized to EGAF cross section deexciting these levels.

*F. Becvar and M. Krticka, Charles University, Prague.

Population/Depopulation Plot

- Calculated population of levels below E_{crit} for ¹⁸⁷W agrees well with EGAF cross section deexciting these levels over 5 orders of magnitude in intensity.
- Disagreement for 364.2-keV 9/2⁻ level resolved by addition of 13.8 keV γ-ray to 350.4-keV 7/2⁻ level improving the fit to both levels.
- Population/depopulation plots are only weakly model dependent.

EGAF Evaluation Status

```
Publications (47 isotopes)
      Z=1-17 (25 isotopes) – Proceedings of ND2013
      <sup>23</sup>Na(n,\gamma) – submitted to Phys. Rev. C.
      <sup>39,40,41</sup>K(n,γ) – Phys. Rev. C 87, 024605 (2013).
      <sup>102,104,105,106,108,110</sup>Pd(n,γ) – Phys. Rev. C 77, 054615 (2008).
      ^{152,154}Eu(n,\gamma) – Proceedings of ND2013
      <sup>155,157</sup>Gd(n,\gamma) – Nucl. Sci. Eng. In press.
      ^{182,183,184,186}W(n,\gamma) – submitted to Phys. Rev. C.
Evaluations in progress (13 isotopes)
      ^{54,56,57,58}Fe(n,\gamma) – Firestone, Krticka
      <sup>89</sup>Y(n,\gamma) – Abusaleem, Hurst
      ^{93}Nb, ^{103}Rh(n, \gamma) – Turkoghu*, Basunia
      <sup>139</sup>La(n,\gamma) – Ureche<sup>+</sup>, Hurst
      <sup>180</sup>W(n,\gamma) – Hurst
      <sup>185</sup>Re(n,\gamma) – Lerch*, Hurst, Carroll
      ^{237}Np,^{241}Am,^{242}Pu(n,\gamma) – Genreith*, Hurst
      ^{238}U(n,\gamma) – Basunia, Genreith*, Sleaford
Recent Measurements (Garching FRM-II)
      <sup>70,72,74,76</sup>Ge, <sup>90,91,92,94</sup>Zr, <sup>192,196,198</sup>Pt(n,γ) – Firestone, Oslo Group
* Graduate student, <sup>+</sup> Undergraduate student
```

²³Na,^{39,40,41}K(n,γ)

²³Na: R.B. Firestone et al, submitted to Phys. Rev. C.(2103)
 ^{39,40,41}K: R.B. Firestone et al, Phys. Rev. C 87, 024605 (2013)

Isotope	$\sigma_0^{}$ (b) Atlas*	$\sigma_0^{}$ (b) This work	New Potassium Nuclear Structure Data				
²³ Na	0.541(3)	0.517(4)	Isotope	²³ Na	⁴⁰ K	⁴¹ K	⁴² K
³⁹ K	2.1(2)	2.28(4)	# levels below E _{crit} (RIPL) ⁺	4	15	11	4
⁴⁰ K	30(8)	90(7)	# levels below E _{crit} (This	13	21	16	17
⁴¹ K	1.46(3)	1.62(3)	work) [†]				
		New J $^{\pi}$ assignments	21	3	2	8	
Ε _γ (⁴¹ K)	P_{γ} ENSDF	P_{γ} This work	New levels placed	0	18	0	0
1524.7	0.1808(9)	0.164(4)					
		Previous levels removed	0	1	0	0	
*Atlas of Neutron Resonances, S.F.			New y-rays placed	27	2	0	0

*Atlas of Neutron Resonances, S.F. Mughabghab, Elsevier (2006).

 $^{\rm +}\mbox{E}_{\rm crit}$ is the excitation energy where the level scheme is complete.

182,183,184,186W(n,γ)

A.M. Hurst, et al, submitted to Phys. Rev. C.

Tungsten Thermal (n, γ) Cross Sections				
lastona	Cross section (b)			
isotope	This work	Atlas		
¹⁸² W(n,γ) ¹⁸³ W	20.5(14)	19.9(3)		
¹⁸² W(n,γ) ¹⁸³ W ^m	0.177(18)			
¹⁸³ W(n,γ) ¹⁸⁴ W	9.4(4)	10.4(2)		
¹⁸³ W(n,γ) ¹⁸⁴ W ^m	0.025(6)			
¹⁸⁴ W(n,γ) ¹⁸⁵ W	1.43(10)	1.7(1)		
¹⁸⁴ W(n,γ) ¹⁸⁵ W ^m	0.0062(16)			
¹⁸⁶ W(n,γ) ¹⁸⁷ W	33.3(6)	38.1(5)		
¹⁸⁶ W(n,γ) ¹⁸⁷ W ^m	0.400(16)			

¹⁸⁷ W β- decay P _γ (686 keV)				
This work	0.352(9)			
ENSDF	0.332(5)			

Tungsten Neutron Separation Energy			
Isotope	S _n (keV)		
	This Work	AME	
¹⁸³ W	6190.88(6)	6190.81(5)	
¹⁸⁴ W	7411.11(13)	7411.66(25)	
¹⁸⁵ W	5753.74(5)	5753.71(30)	
¹⁸⁷ W	5466.62(7)	5466.79(5)	

Improved W Adopted Level, Gamma Data

New Tungsten Nuclear Structure Data				
Isotope	¹⁸³ W	¹⁸⁴ W	¹⁸⁵ W	¹⁸⁷ W
# levels below E _{crit} (RIPL)	11	12	8	3
# levels below E _{crit} (This work)	12	18	11	40
New J^{π} assignments	1	1	3	16
New levels placed	0	0	0	1
Previous levels removed	1	1	0	0
New γ -rays placed	1	2	2	5

^{152,154}Eu,^{155,157}Gd(n,γ)

^{152,154}Eu: Proceedings of ND2013
^{155,157}Gd: Nucl. Sci. Eng. In press.

Tungsten Thermal (n, γ) Cross Sections				
Isotono	Cross section (b)			
isotope	This work	Atlas		
¹⁵² Eu(n,γ) ¹⁵³ Eu ^g	7060(400)	5900(200)		
¹⁵² Eu(n,γ) ¹⁵³ Eu ^{m1}	2345(220)	3300(200)		
¹⁵² Eu(n,γ) ¹⁸⁴ Eu ^{g+m1}	9405(460)	9200(100)		
¹⁵⁴ Eu(n,γ) ¹⁵⁵ Eu ^m	335(10)	310(7)		
¹⁵⁵ Gd(n,γ) ¹⁵⁶ Gd	56,700(2100)	60,900(500)		
¹⁵⁷ Gd(n,γ) ¹⁵⁸ Gd	239,000(6000)	254,000(815)		

Discrepancy in ¹⁵³Eu^{m1} cross section due to decay scheme normalization

Target	$\sigma_0 0(\mathrm{EGAF})$	$\sigma_0(\text{Atlas*})$
⁶ Li	52.6(22) mb	44.8(3) mb
⁷ Li	46.3(13) mb	45.2(14) mb
⁹ Be	8.8(6) mb	8.5(3) mb
¹⁰ B	3.90(11) mb	3.05(16) mb
¹¹ B	9.06(20) mb	5.5(33) mb
^{12}C	3.89(6) mb	3.53(7) mb
¹³ C	1.51(3) mb	1.37(4) mb
^{14}N	78.5(7) mb	80.1(6) mb
¹⁵ N	39(3) mb	24(8) mb
¹⁶ O	197(7) mb	190(20) mb
¹⁹ F	9.63(16) mb	9.51(9) mb
²³ Na	541(3) mb	517(4) mb
²⁴ Mg	535(20) mb	538(13) mb
^{25}Mg	196(8) mb	199(3) mb
²⁶ Mg	38.8(14) mb	38.4(6) mb
²⁷ Al	232.2(17) mb	231(3) mb
²⁸ Si	186(2) mb	171(3) mb
²⁹ Si	128(4) mb	119(3) mb
³⁰ Si	112(6) mb	107(2) mb
³¹ P	169(5) mb	165(3) mb
^{32}S	542(7) mb	518(14) mb
³³ S	449(7) mb	454(20) mb
^{34}S	285(8) mb	256(9) mb
³⁵ Cl	44.00(20) b	43.6(4) b
³⁷ Cl	50.0(8) mb	43.3(6) mb

Z≤17 (n,γ)

Measurements published in the proceedings of ND2013.

Complete decay schemes available for all isotopes.

THANK YOU FOR YOUR ATTENTION! ANY QUESTIONS?