Resonance Evaluation at ORNL

L. Leal (ORNL) Y. Danon (RPI)

CSEWG, Nov 5-9, 2012

²³⁵U Evaluation:

Intermediate energy benchmark problems;

✓ Fit new data measurements from RPI (capture and fission yields);

Capture data from LANL;

✓ Test the new SAMMY ²³⁵U evaluation in benchmark calculations: ZEUS benchmarks;

✓ Use JENDL4 as the template;

✓ Benchmark Calculations done with everything else from ENDF;

RPI data and ENDF evaluation

K

National Laboratory

DGF

RPI and LANL Capture Data

RPI and LANL Capture Data

for the Department of Energ

RPI and LANL Capture Data (average)

itional Laborator

Fit of the RPI data

National Laboratory

42 Mana for the Department of Energy

Fit of the RPI data

National Laboratory

Fit of the LANL data

National Laboratory

44 Managea c, cr batterie for the Department of Energy

The HEU-MET-INTER-006 cases (ZEUS)

Case Number	k _{eff}	EALF (keV)	Intermediate-Energy Fission Fraction
1	0.9977 ± 0.0008	4.44	0.730
2	1.0001 ± 0.0008	9.45	0.698
3	1.0015 ± 0.0008	22.80	0.636
4	1.0016 ± 0.0008	80.80	0.503

EALF: Energy Average Lethargy Causing Fission

Effective System Multiplication Factor

Production

Absorption + Leakage

46 Managed by UT-Battelle for the Department of Energy

 $k_{e\!f\!f}$

ZEUS1

0.04 Production HE Absorption 0.035 Leakage UR 0.03 RR keff contribution 0.025 0.02 0.015 0.01 0.005 0 1e+07 100 1000 10000 100000 1e+06 10 Neutron energy [eV] National Laboratory 50 Managed by 01-Battelle for the Department of Energy

The HEU-MET-INTER-006 cases (ZEUS)

Case Number	Benchmark k _{eff}	Calculated k _{eff}		
		ENDF/B-VII.0	JENDL4	ORNL
1	0.9977	0.99304	1.00084	0.99644
(ZEUS1)	±	±	±	±
	0.0008	0.00035	0.00036	0.00035
2	1.0001	0.99603	1.00501	1.00015
(ZEUS2)	±	±	±	±
	0.0008	0.00035	0.00036	0.00035
3	1.0015	1.00065	1.00664	1.00208
(ZEUS3)	±	±	±	±
	0.0008	0.00035	0.00034	0.00033
4	1.0016	1.00750	1.00673	1.00496
(ZEUS4)	±	±	±	±
	0.0008	0.00031	0.00034	0.00031

Case Number	Benchmark	Calculated			
	Kell	ENDF/B-VIL0	JENDL-4	JENDL4+ORNL	ENDF/B-VIL0+ORNL
I		HEU E	enchmarks		
heu-met-fast-001	1.0000	0.99928	0.99751	0.99753	1.00004
(godiva)	±	±	±	±	±
	0.0010	0.00025	0.00026	0.00026	0.00027
heu-met-fast-028	1.0000	1.00320	0.99918	0.99886	1.00241
(flattop)	±	±	±	±	±
	0.0030	0.00030	0.00029	0.00029	0.00030
heu-met-inter-006-1	0.9977	0.99304	1.00084	0.99644	1.00244
(ZEUS1)	±	±	±	±	±
	0.0008	0.00035	0.00036	0.00035	0.00034
heu-met-inter-006-2	1.0001	0.99603	1.00501	1.00015	1.00699
(ZEUS2)	±	±	±	±	±
	0.0008	0.00035	0.00036	0.00035	0.00034
heu-met-inter-006-3	1.0015	1.00065	1.00664	1.00208	1.00907
(ZEUS3)	±	±	±	±	±
	0.0008	0.00035	0.00034	0.00033	0.00033
heu-met-inter-006-4	1.0016	1.00750	1.00673	1.00496	1.01087
(ZEUS4)	±	±	±	±	±
	0.0008	0.00031	0.00034	0.00031	0.00033
heu-sol-therm-013-case-	1.0012	0.99848	0.99805	0.99771	0.99880
1	±	±	±	±	±
	0.0026	0.00026	0.00024	0.00024	0.00045
heu-sol-therm-013-case-	1.0007	0.99745	0.99716	0.99690	0.99712
2	±	±	±	±	±
	0.0036	0.00026	0.00027	0.00028	0.00027
heu-sol-therm-013-case-	1.0009	0.99417	0.99382	0.99327	0.99443
3	±	±	±	±	±
	0.0036	0.00028	0.00028	0.00028	0.00028
heu-sol-therm-013-case-	1.0003	0.99571	0.99598	0.99501	0.99540
4	±	±	±	±	±
	0.0036	0.00030	0.00028	0.00029	0.00028
heu-sol-therm-032	1.0015	0.99906	0.99886	0.99894	0.99928
(ORNL10-CSEWG)	±	±	±	±	±
	0.0026	0.00017	0.00015	0.00017	0.00016

Case Number	Benchmark Keff	Calculated keff			
		ENDF/B-VII.0	JENDL-4	JENDL4+ORNL	ENDF/B-
					VII.0+ORNL
		LEU Thermal So	olution Benchmarks		
leu-sol-therm-002-	1.0038	1.00002	0.99969	0.99905	1.00038
case-1	±	±	±	±	±
	0.0040	0.00025	0.00025	0.00025	0.00028
leu-sol-therm-002-	1.0024	0.99594	0.99616	0.99618	0.99480
case-2	±	±	±	±	±
	0.0040	0.00028	0.00029	0.00028	0.00030
leu-sol-therm-007-	0.9961	0.99495	0.99508	0.99487	0.99522
case-14	±	±	±	±	±
	0.0009	0.00030	0.00030	0.00031	0.00033
leu-sol-therm-007-	0.9973	0.99771	0.99741	0.99744	0.99736
case-30	±	±	±	±	±
	0.0009	0.00031	0.00030	0.00031	0.00029
leu-sol-therm-007-	0.9985	0.99579	0.99602	0.99589	0.99649
case-32	±	±	±	±	±
	0.0010	0.00029	0.00029	0.00031	0.00027
leu-sol-therm-007-	0.9988	0.99860	0.99864	0.99830	0.99882
case-36	±	±	±	±	±
	0.0011	0.00027	0.00028	0.00028	0.00029
leu-sol-therm-007-	0.9983	0.99752	0.99764	0.99716	0.99704
case-49	±	±	±	±	±
	0.0011	0.00028	0.00026	0.00025	0.00027

Case Number	Benchmark Keff	Calculated keff			
		ENDF/B-VII.0	JENDL-4	JENDL4+ORNL	ENDF/B-
					VII.0+ORNL
		LEU Thermal Con	npound Benchmarks		
leu-com-therm-008-	1.0007	1.00118	1.00136	0.99988	1.00134
case-1	±	±	±	±	±
	0.0016	0.00029	0.00029	0.00030	0.00031
leu-com-therm-008-	1.0007	1.00131	1.00109	1.00036	1.00036
case-2	±	±	±	±	±
	0.0016	0.00030	0.00029	0.00030	0.00029
leu-com-therm-008-	1.0007	1.00065	1.00064	0.99996	1.00000
case-5	±	±	±	±	±
	0.0016	0.00030	0.00029	0.00030	0.00031
leu-com-therm-008-	1.0007	1.00029	1.00053	0.99971	1.00070
case-7	±	±	±	±	±
	0.0016	0.00030	0.00029	0.00030	0.00029
leu-com-therm-008-	1.0007	1.00074	1.00014	0.99883	0.99991
case-8	±	±	±	±	±
	0.0016	0.00030	0.00029	0.00030	0.00030
leu-com-therm-008-	1.0007	1.00203	1.00175	1.00044	0.99891
case-11	±	±	±	±	±
	0.0016	0.00030	0.00029	0.00030	0.00030

Resonance Evaluation at ORNL

L. Leal (ORNL)

CSEWG, Nov 5-9, 2012

²³⁹Pu Resonance Evaluation Presence of ²³⁹Pu in a Nuclear System

- For a critical (or subcritical) nuclear system the fueltemperature reactivity coefficient is negative. The presence of ²³⁹Pu can make it positive;
- The ²³⁹Pu resonance at ~ 0.3 eV produces fissions and some capture and therefore increases reactivity;
- As the ²³⁹Pu builds up more fissions are produced leading to a change in the reactivity;
- Determination of the ²³⁹Pu content in the spent fuel and an accurate knowledge of the nuclear data is needed for a safe shipping and cask design;

²³⁹Pu Resonance Evaluation

Motivation:

• Existing resonance evaluation divided into three disjoint resonance parameter sets (computer limitations at the time ~ 1986) :

1.0×10⁻⁵ eV - 1 keV, 1 keV - 2 keV, 2 keV - 2.5 keV;

Issues are:

- Cross section mismatch at the energy boundaries;
- Not easy to generate uncertainty for the whole energy region (zero correlations between energy regions);
- Solve long standing problem for thermal benchmark;

Early Evaluation (Leal/Derrien at ORNL - 2008)

• One single set of resonance parameters covering the energy range:

 1.0×10^{-5} eV to 2.5 keV;

- Cross section mismatch at the energy boundaries gone!
- Uncertainty for the whole energy region generated with correlations properly determined!!
- Does it solve the problem of thermal benchmark?

Issues with ORNL Evaluation

- Results of plutonium solution calculations indicate no improvement using the new ORNL evaluation. Longstanding problem persists!!
- In some case the good results from previous ²³⁹Pu evaluation deteriorated;
- Can the problem be solved?
- Efforts from ORNL, LANL and CEA (France)

Integral Benchmark Experiments

- Benchmark from the ICSBEP;
- Plutonium Solution Systems;
- A good choice would be those benchmark experiments spanning the energy region from 0.01 eV to 3 eV
- Choice based on the Energy of Average Lethargy Causing Fission (EALF)

Benchmark problem from ICSBEP

Benchmark	Experimental <i>Keff</i>	EALF(eV)	
PST1.4	1.0000 ± 0.0050	0.0154	5 % ²⁴⁰ Pu
PST4.1 (sphere)	1.0000 ± 0.0047	0.0531	5 % ²⁴⁰ Pu
PST12.10 (cubic tank)	1.0000 ± 0.0047	0.0535	25 % ²⁴⁰ Pu
PST12.13	1.0000 ± 0.0047	0.0428	19 % ²⁴⁰ Pu
PST18.1 (cylinder)	1.0000 ± 0.0047	0.0761	43 % ²⁴⁰ Pu
PST34.4 (cylinder)	1.0000 ± 0.0047	0.231	116g Pu/L, 1.42g Gd/L
PST34.15	1.0000 ± 0.0047	2.730	363 g Pu/L, 20.25g Gd/L

EALF: Energy Average Lethargy Causing Fission ²² Managed by UT-Battelle for the Department of Energy

JEFF3.1.1 Evaluation (work done at French Atomic Commission/Cadarache)

- Improves substantially prediction of thermal critical systems multiplication factor k_{eff} ;
- Work started based on the JEFF3.1 (ENDF/VII.1), that is, the three disjoint sets of resonance parameters;
- Some adjustments to other quantities such as nubar;
- Experimental cross section not well represented;

ORNL (USA) and Cadarache (France)

Work Strategy

- Use the SAMMY code to perform resonance analysis using the best selected set of experimental time-of-flight data;
- Generate cross-section library with the NJOY code for use in benchmark calculations with the MCNP code;
- Generate cross-section library with the GALLILE (NJOY +CALENDF) code for use in benchmark calculations with the MCNP (USA), TRIPOLI and APOLLO French codes;
- Use a selected set of experimental benchmarks with average of neutron lethargy causing fission spanning the energy range from 0.01 eV to 3 eV;
- Use other benchmarks in addition to the ICSBEP. Examples are the MISTRAL and FUBILA experiments (MOX fuel) performed at the EOLE facility to test the evaluation in France;

EXPERIMENTAL DIFFERENTIAL DATA

Reference	Energy Range	Facility	Measurement
	(eV)		
Bollinger et al. (1956)	0.01 - 1.0	Chopper	Total Cross Section
Gwin et al. (1971)	0.01 - 0.5	ORELA	Fission and Absorption at 25.6 m
Gwin et al. (1976)	1.0 - 100.0	ORELA	Fission and Absorption at 40.0 m
Gwin et al. (1984)	0.01 - 20.0	ORELA	Fission at 8 m
Weston et al. (1984)	9.0 - 2500.0	ORELA	Fission at 18.9 m
Weston et al. (1988)	100.0 - 2500.0	ORELA	Fission at 86 m
Weston et al. (1993)	0.02 - 40.0	ORELA	Fission at 18.9 m
Wagemans et al. (1988)	0.002 - 20.0	GELINA	Fission at 8 m
Wagemans et al. (1993)	0.01 – 1000.0	GELINA	Fission at 8 m
Harvey et al. (1985)	0.7 - 30.0	ORELA	Transmission at 18 m
Harvey et al. (1985)	30.0 - 2500.0	ORELA	Transmission at 80 m

External Levels Determination

2

National Laboratory

Cross Section Fitting

Integral Quantities:

✓ Benchmark experiments sensitive to the fission and capture cross sections, and also to nu-bar

✓ A right combination of capture, fission, and nub-bar may lead to an improvement on the k_{eff} ;

Eta and K1 are two important quantities in reactor calculations:

✓ $Eta(\eta)$: six factor form

 \checkmark K1: from first-order perturbation theory

Multiplication Factor: k_{∞}

Leakage

Production

Absorption $k_{\infty} \propto \eta = \frac{v\sigma_{f}}{\sigma_{a}}$ K1 Factor: first-order perturbation theory *Reactivity change:* δρ

$$\delta\rho = \frac{<\phi^{+}, \Delta H\phi>}{<\phi^{+}, P\phi>}$$

$\Delta H = \Pr oduction - Absorption$

 $\sum Equivalent K1$ $K1 = v\sigma_f - \sigma_a$

and $K1 = v\sigma_f - \sigma_a$

Benchmarks sensitive to K1, i.e., the difference:

production - absorption

Th	nermal values	and integral qua with SAMMY	ntities calc	ulated
Quantity	ANR	ENDF/B-VII.1 (JEFF3.1)	JEFF3.1.1	NEW (ornl/cea)
$\sigma_{_{\gamma}}$	269.3 ± 2.9	270.64	272.72	270.06
$\sigma_{_f}$	748.1 ± 2.0	747.65	747.08	747.19
g_f	1.0553 ± 0.0013	1.0544	1.0495	1.0516
g_a	1.0770 ± 0.0030	1.0784	1.0750	1.0771
$\frac{1}{v}$	2.879 ± 0.006	2.873	2.873	2.873
I_{γ}	180 ± 20	181.44	181.50	180.09
I_{f}	303 ± 10	302.60	303.58	309.09
<i>K</i> 1	1177.25	1166.62	1156.35	1161.30

ANR: Atlas of Neutron Resonance

ICSBEP Benchmark Results (everything else from BVII.1)

35 Managed by UT-Battelle for the Department of Energy

National Laboratory

ORNL Resonance Evaluations and deliverables

	Energy Range	Resonance Covariance Evaluation	Target date for delivery the evaluation
⁶³ Cu	Thermal to 300 keV	Yes	July FY2014
⁶⁵ Cu	Thermal to 300 keV	Yes	July FY2014
¹⁸² W	Thermal to 10 keV	Yes	FY2014
183W	Thermal to 5 keV	Yes	FY2014
184W	Thermal to 10 keV	Yes	FY2014
186W	Thermal to 10 keV	Yes	FY2014
⁵⁶ Fe	Thermal to 2 MeV	Yes	FY2014
²³⁹ Pu	Thermal to 2.5 keV	Use ENDF/B- VII.1 (FILE33)	FY2012
235U Battelle	Thermal to 2.25 keV	Use ENDF/B- VII.1 (FILE33)	FY2013

52 Managed by UT Battelle for the Department of Energy

ational Laboratory