US Nuclear Data Program

M. Herman, S. Hoblit, G. P. A. Nobre, A. Palumbo, M. T. Pigni* National Nuclear Data Center Brookhaven National Laboratory

> G. Palmiotti, H. Hiruta, M. Salvatores Idaho National Laboratory

* now at Oak Ridge National Laboratory

a passion for discovery

Office of Science

ARRA project (2009-2012)

Use of Covariances in a Consistent Data Assimilation for Improvement of Basic Nuclear Parameters in Nuclear Reactor Applications: From Meters to Femtometers

BNL - EMPIRE prior calculations, covariances for model parameters, group-wise sensitivity matrices

INL - integral experiment sensitivities to group-wise cross sections, assimilation

"It has been a bit forgotten that in all really creative thinking in reactor design, a working knowledge of nuclear reaction theory is required."

Brookhaven Science Associates

Consistent adjustment (assimilation) Inking reaction theory and integral experiments

- Users often tune multi-group evaluated files to a certain type of integral experiments
- Such adjusted file is only valid for a specific application

Brookhaven Science Associates

Consistent adjustment (assimilation) Inking reaction theory and integral experiments

 Modern practice is to use nuclear reaction code constrained by experimental data to produce evaluation and covariances

Consistent adjustment (assimilation) Inking reaction theory and integral experiments

- Tuning is moved from multi-group file to reaction model parameters providing
 - evaluation constrained by differential and integral data and reaction theory

Scope of the project

Investigate feasibility of the assimilation concept for priority materials

- ²³Na coolant
- 56Fe structure material
- ¹⁰⁵Pd fission product
- ^{235,238}U, ²³⁹Pu major actinides
- ²⁴²Pu minor actinide

Clean integral experiments available

Brookhaven Science Associates

Assimilation of ²³Na

- Lesson learned
 - non-linearity effects may distort the assimilation procedure and must be kept under control.
 - cross section fluctuations represent a challenge (in ²³Na treated via energy dependent scaling factor)

Brookhaven Science Associates

10 Incident Neutron Energy (MeV)

Assimilation of 56Fe

Hopeless resonance-like structure up to 8 MeV
 Poor prior - better CC omp needed

C/E after assimilation of ⁵⁶Fe

Experim	ent	$C/E \pm (before)$	$C/E \pm (after)$
$^{10}B(n,)$ slope	ZPR3-54	0.853 ± 0.030	1.012 ± 0.022
235 U(n,f) slope	ZPR3-54	0.907 ± 0.030	1.015 ± 0.013
239 Pu(n,f) slope	ZPR3-54	0.889 ± 0.030	0.996 ± 0.013
238 U(n,f) slope	ZPR3-54	1.455 ± 0.030	1.284 ± 0.014
$^{32}S(n,p)$ slope	EURACOS	0.879 ± 0.093	1.197 ± 0.055
$^{197}Au(n,)$ slope	EURACOS	1.288 ± 0.098	1.054 ± 0.032
115 In(n,n') slope	EURACOS	0.327 ± 0.156	0.455 ± 0.042
$^{103}Rh(n,n')$ slope	EURACOS	0.478 ± 0.071	0.511 ± 0.010

 Certain improvement achieved but VII.0 performs better

Poor prior - better CC omp needed

Brookhaven Science Associates

⁵⁶Fe - posterior parameters

Parameter	Variation (%)	Init. Std. Dev. (%)	Final Std. Dev. (%)
Scat. Rad. ^{<i>a</i>}	-13.25	5.1	2.1
Γ_n Bound Level ^b	1.9	4.0	3.7
Γ_g Bound Level ^b	-2.1	5.0	4.8
$\Gamma_n 277 \text{ keV}^{c}$	-1.1	8.0	8.0
$\Gamma_n 317 \text{ keV}^c$	-2.2	8.0	8.0
$\Gamma_n 361 \text{ keV}^c$	-2.9	8.0	8.0
$\Gamma_n 381 \text{ keV}^c$	-3.0	8.0	8.0
$\Gamma_n 665.6 \text{ keV}^c$	1.3	8.0	8.0
Real well volume ^{d}	15.1	3.0	2.2
Nuclear radius Real Surf. ^e	10.5	3.0	2.9
Imag. & Real Surf. ^f	10.8	5.0	4.9
TOTRED ^g	-0.9	1.0	1.0
FUSRED ^h	-2.0	1.3	1.2

Unphysical changes in the parameters

Brookhaven Science Associates

⁵⁶Fe lesson learned

- Integral experiments alone do not ensure restoring agreement with differential data if the prior is of poor quality.
- A practical, necessarily approximative, method should be developed for treating fine energy fluctuations that can't be treated in terms of the reaction theory
- Possible discrepancies among differential and integral experiments might make consistent assimilation difficult or impossible.

Brookhaven Science Associates

Assimilation of ¹⁰⁵Pd

Wednesday, November 7, 12

¹⁰⁵Pd - prior parameter correlations

	Parameter	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	UOMPRV-011 ^a	100																							
2	UOMPVV-011 ^a	-99	100																						
3	UOMPRS-011 ^a	-72	67	100																					
4	UOMPWS-011 ^a	89	-89	-78	100																				
5	UOMPRW-011 ^a	0	0	0	0	100																			
6	UOMPWV-011 ^a	0	0	0	0	0	100																		
7	TOTRED-000 ^b	0	0	0	0	0	0	100																	
8	FUSRED-000 ^b	0	0	0	0	0	0	0	100																
9	ATILNO-000 ^c	-4	4	2	-5	0	0	0	0	100															
10	ATILNO-010 ^c	-40	40	26	-35	0	0	0	0	1	100														
11	ATILNO-020 ^c	0	0	0	0	0	0	0	0	0	0	100													
12	ATILNO-030 ^c	0	0	0	0	0	0	0	0	0	0	0	100												
13	GTILNO-000 ^d	30	-30	-20	26	0	0	0	0	-1	-38	0	0	100											
14	GTILNO-010 ^d	2	-2	-1	2	0	0	0	0	0	1	0	0	-5	100										
15	GTILNO-020 ^d	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100									
16	GTILNO-030 ^d	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100								
17	TUNEPE-100 ^e	4	-4	-3	4	0	0	0	0	0	1	0	0	-10	-1	0	0	100							
18	TUNE-000 ^f	6	-6	-4	7	0	0	0	0	-99	-2	0	0	2	0	0	0	0	100						
19	TUNE-011 ^f	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100					
20	TUNE-010 ^f	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100				
21	PCROSS-000 ^g	-25	25	17	-23	0	0	0	0	1	68	0	0	36	2	0	0	5	-1	0	0	100			
22	RESNOR-100 ^h	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100		
23	RESNOR-200 ^h	-1	1	1	-1	0	0	0	0	0	-24	0	0	5	0	0	0	1	0	0	0	0	0	100	
24	RESNOR-300 ^h	0	0	0	0	0	0	0	0	0	-5	0	0	0	0	0	0	0	0	0	0	0	0	0	100

Strong anti-correlation between CN level density and gamma strength function

Brookhaven Science Associates

¹⁰⁵Pd - assimilation results

Experiment	old C/E $\pm \sigma$	new C/E $\pm \sigma$
PROFIL-1	0.835 ± 0.028	0.990 ± 0.027

Parameter	Variation $(\%)$	Init. % Std. Dev.	Final % Std. Dev.
TUNE000 ^a	69.253	40.00	10.77
ATILNO000 ^b	-2.573	1.49	0.43
FUSRED000 ^c	0.353	2.00	1.99

- TUNE-ATILNO anti-correlation keeps capture cross section constant!
- Assimilation required modification of the covariance matrix (increasing gamma-strength uncertainty keeping CN level density constrained)

Brookhaven Science Associates

¹⁰⁵Pd - assimilation results (cont.)

Assimilation concept worked! Violence had to be done to the differential covariance matrix to fit integral data.

BROOKHAVEN

Brookhaven Science Associates

¹⁰⁵Pd - lesson learned

- If two parameters happen to be strongly anticorrelated assimilation may exploit this feature to drive both parameters out of the physical range.
- If assimilation is not possible without increasing properly defined prior uncertainties it either means that the model is not adequate or flexible enough, or that differential and integral experiments are inconsistent.

Brookhaven Science Associates

Assimilation of ²³⁵U (1st round)

			GODIVA	
_	Experim	ent	$C/E \pm \sigma$ (before)	$C/E \pm \sigma \text{ (after)}$
_	$k_{ m eff}$		0.9907 ± 0.002	1.0010 ± 0.002
	238 U(n,f)/ 23	35 U(n,f)	1.0527 ± 0.013	1.0357 ± 0.004
	239 Pu(n,f)/ 23	35 U(n,f)	0.9917 ± 0.018	0.9771 ± 0.003
	$^{237}Np(n,f)/^{23}$	35 U(n,f)	1.0703 ± 0.017	1.0536 ± 0.003
	233 U(n,f)/ 23	35 U(n,f)	0.9964 ± 0.019	0.9820 ± 0.004
-	Parameter	Variation ((%) Init. Std. Dev. (%)	Final Std. Dev. (%)
-	FUSRED000 ^a	1.402	1.257	0.878
	TOTRED000 ^b	0.461	0.966	0.917
	ATILNO000 ^c	-0.236	0.950	0.946
	DELTAF000 ^d	-0.025	0.649	0.621
	VB000 ^e	-0.006	0.133	0.118
	UOMPVV011 ^f	0.033	0.116	0.116
	UOMPRS011 ^g	0.072	0.834	0.834
	UOMPWS011 ^h	-0.110	2.023	2.022
	TUNE000 ⁱ	-0.099	1.908	1.908 BBOOL/CLA
Brookhaven	Science Associates M	ike Herman		NATIONAL LABOR

RY

²³⁵U (1st round) - assimilated fission

²³⁵U (1st round) - lesson learned

- A single integral experiment can be successfully assimilated even with a poor prior. Here, k_{eff}=1 was obtained by scaling fission (fusion) cross sections regardless of differential data.
- More integral experiments with diverse characteristics should help.

Brookhaven Science Associates

Assimilation of ²³⁹Pu (1st round)

	JEZEBEL	
Experiment	prior C/E \pm	post C/E \pm
$k_{ m eff}$	0.9857 ± 0.002	09998 ± 0.002
Fis.238U/Fis.235U	0.9561 ± 0.009	0.9598 ± 0.002
Fis.239Pu/Fis.235U	0.9708 ± 0.020	0.9917 ± 0.003
Fis.237Np/Fis.235U	0.9988 ± 0.017	1.0010 ± 0.001
Fis.233U/Fis.235U	1.0003 ± 0.017	1.0002 ± 0.001

Consistent improvement (except ²³⁸U/²³⁵U)
 VII.1 and assimilated file equivalent on k_{eff} but...

Brookhaven Science Associates

²³⁹Pu (1st round) - assimilated fission

... NOT for differential experiments

NATIONAL LABO

Brookhaven Science Associates

Mike Herman

Wednesday, November 7, 12

²³⁹Pu (1st round) - assimilated parameters

Parameter	Variation	Prior Std. Dev.	Posterior Std. Dev.
	(%)	(%)	(%)
VA000 ^{<i>a</i>}	-0.141	0.134	0.121
FUSRED000 ^b	0.432	0.951	0.612
LDSHIF010 ^c	0.299	0.705	0.692
DELTAF000 ^d	-0.120	0.671	0.668
ATILNO010 ^e	-0.076	0.965	0.958
VB000 ^{<i>f</i>}	-0.079	0.480	0.479
ATLATF000 ^g	0.128	1.240	1.239
TOTRED000 ^h	-0.0831	0.918	0.815
HA000 ^{<i>i</i>}	-0.155	0.474	0.471

Assimilation distributed over several parameters

Brookhaven Science Associates

²³⁹Pu (1st round) - lesson learned

 Perfect agreement with integral parameter can be obtained without satisfactorily reproducing differential data.

There is no substitute for a good prior!

Brookhaven Science Associates

Assimilation of ²³⁹Pu (2nd round)

- New version of EMPIRE with improved fission parametrization (M. Sin)
- Overall very good prior
- EMPIRE calculated PFNS included in assimilation
- Direct assimilation on JEZEBEL's keff using MCNP performed at BNL.

Brookhaven Science Associates

²³⁹Pu (2nd round) assimilated fission

²³⁹Pu (2nd round) - assimilated parameters

Parameter Name	pre-assimilation	post-assimilation
ATILNO-000	1.083	1.0851
ATILNO-001	0.907	0.9034
ATILNO-020	0.938	0.9380
ATILNO-030	0.988	0.9880
TUNEFI-010	0.833	0.8327
TUNE-000	2.228	2.2230
FUSRED-000	0.970	0.9700
RESNOR-000	1.320	1.3200
FISVF1-000	1.000	0.9995
FISVF1-010	1.000	1.0005
FISVF2-000	1.000	1.0042
FISVE1-000	1.000	0.9985
FISVE2-000	1.000	0.9995
FISHO1-000	1.000	0.9992
FISHO2-000	1.000	0.9992
FISAT1-000	0.917	0.9157
FISAT2-000	0.971	0.9717
FISAT2-010	0.981	0.9810
FISDL1-000	1.000	0.9999
FISDL2-000	1.000	0.9999
LDSHIF-000	1.100	1.0990
LDSHIF-010	1.063	1.0647
LDSHIF-020	0.917	0.9170
PFNALP-000	0.963	0.9613
PFNRAT-000	0.928	0.9279
PFNERE-000	0.999	1.0002
PFNTKE-000	0.984	0.9853

- The change required for assimilation is very small in comparison to the uncertainties of the experimental data sets.
- Tiny changes in the parameters are well within the prior uncertainties of the parameters

Brookhaven Science Associates

²³⁹Pu (2nd round) - post-assimilation covariance matrix

	Parameter	1	2	3	5	6	7	9	10	11	12	13	14	16	17	18	20	23	24	26	34	37	38	46	47	48	50	51	52	53
1	ATILNO-000 ^a	100						0	10		12	10		10		10	20	- 20	21	20				10		10			02	
2	ATILNO-010 ^a	4	100																											
3	ATILNO-020 ^a	-2	0	100																										
5	TUNEFI-010 ^b	0	1	4	100																									
6	TUNEFI-000 ^b	-1	2	-1	0	100																								
7	TUNE-000 ^c	-19	-2	1	0	-1	100																							
9	TOTRED-000 ^d	0	0	0	0	0	0	100																						
10	FUSRED-000 ^d	0	0	0	0	0	0	-98	100																					
11	RESNOR-000 ^e	-5	15	-7	1	0	2	1	0	100																				
12	FISVF1-000 ^f	-3	47	-12	2	8	-3	0	0	17	100																			
13	FISVF1-010 ^f	-2	-13	22	-2	0	1	0	0	-47	-7	100																		
14	FISVF1-020 ^f	2	6	-21	-1	0	-1	0	0	0	0	-5	100																	
16	FISVF2-000 ^f	-13	-38	17	-3	12	4	0	0	-19	-67	6	3	100																
17	FISVF2-010 ^f	-2	-5	-21	19	-1	0	0	0	-2	-16	-26	2	22	100															
18	FISVF2-020 ^f	0	3	-24	-1	0	0	0	0	0	-2	1	-29	4	6	100														
20	FISVE1-000 ^{<i>g</i>}	-1	-2	0	0	-1	-1	0	0	0	17	0	0	9	0	0	100													
23	FISVE2-000 ^{<i>g</i>}	-2	7	-2	0	-1	-1	0	0	0	0	0	0	18	-2	0	-1	100												
24	FISVE2-010 ^{<i>g</i>}	0	0	5	-2	0	0	0	0	0	2	-1	0	-3	12	0	0	0	100											
26	FISHO1-000 ^h	4	3	1	0	2	1	-1	0	6	34	0	-2	3	0	0	1	2	0	100										
34	FISAT1-000 ^{<i>i</i>}	-1	10	-3	1	-1	-1	0	0	1	3	-3	1	20	-4	0	-1	-2	0	-1	100									
37	FISAT2-000 ^{<i>i</i>}	-2	67	21	-3	-2	0	0	0	-4	-2	10	$\overline{7}$	20	20	8	0	-4	-3	3	-3	100								
38	FISAT2-010 ^{<i>i</i>}	2	-1	37	-3	0	-1	0	0	4	7	-12	12	-10	17	17	0	1	-3	-1	2	-14	100					1		
46	LDSHIF-000 ^j	21	0	0	0	0	4	0	0	2	3	0	-1	2	0	0	0	1	0	-4	0	1	0	100						N
47	LDSHIF-010 ^j	-9	-18	5	-1	-7	-1	1	0	-17	-13	-15	7	50	7	3	-10	-6	-1	11	-6	8	-2	2	100					
48	LDSHIF-020 ^j	0	1	1	-6	0	0	0	0	1	3	-5	-4	-3	30	-8	0	0	-3	0	0	-2	-1	0	-1	100				
50	PFNALP-000 ^k	0	-1	0	0	0	0	0	0	2	-1	1	-1	3	0	0	0	0	0	0	0	0	-1	0	0	0	100			
51	PFNRAT-000 ^k	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	65	100		_
52	PFNERE-000 ^k	-1	2	-1	0	0	1	0	0	-2	1	-1	1	-4	0	0	0	0	0	0	0	0	1	0	-1	P	-65	-1	100	
_53	PFNTKE-000 ^k	-1	1	0	0	0	0	10	0	-2	1	-1	1	-4	0	0	0	0	0	0	0	0	1	0	-1		-24	44	88	100
																											$\overline{\ }$			
											l it	tle		or	rol	ati	or		ho	۲ \۸/		n								
																au		13			CC									
																					4									
												IN S) a	DN	X-	·se	C	pal	rar	ne	te	S					-	191514	1	7
																										HI	$\{\Pi\}$		112	
ookh	aven Science	Asso	ciate	s		Mik	e He	erma	n																	NATI	ONA	L L	BOI	ATOI

Br

²³⁹Pu (2nd round) - assimilated capture

²³⁹Pu (2nd round) - assimilated elastic

²³⁹Pu (2nd round) - assimilated inelastic

²³⁹Pu (2nd round) - lesson learned

- Successful assimilations when starting with good prior
- Reduction of uncertainties in the model parameters and consequently also in the calculated integral result
- Little correlations among x-sec and PFNS parameters

Brookhaven Science Associates

Assimilation priors for ²³⁵U and ²³⁸U (2nd round)

Both standards and reproduced within about 2% (standards uncertainties) 10 14 levels <u>coupled</u> in 238U calculations Section (barns) ²³⁸U(n,f) Science Associates Herman 0SS Wednesgay, November 7, 12

section (barns)

Wednesday, November 7, 12

Assimilation priors for ²³⁵U and ²³⁸U - lesson learned

Fully model based priors of a quality comparable to modern evaluations are possible!

Brookhaven Science Associates

Conclusions

Assimilation pitfalls

- non-linearity
- fluctuations in cross sections
- selection of experimental data
- PPP
- anti-correlations driving parameters out of physical range

Assimilation prerequisites

- realistic covariances and correlations among measurements
- good physics/modeling resulting in good prior
- realistic weighting of differential and integral experiments
- verity of experiments probing different aspects

Assimilation is feasible

Brookhaven Science Associates

Changes much smaller than experimental cross section or model uncertainties are sufficient for a good prior to reproduce integral measurements. Thus:

- differential data based evaluation is unlikely to predict integral experiment within its precision
- integral data are not sufficient to turn a bad prior into a good one
- only all experimental information combined with the state of the art modeling may provide a right answer

Brookhaven Science Associates