Photon strengths for primary γ-rays in (n,γ)

Richard B. Firestone
Isotopes Project, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720

Primary γ-ray photon strengths

Photon strength, as defined by the statistical model community.


$$f(E_{\gamma}) = \sigma_{\gamma} \Gamma_{\gamma} / (\sigma_{0} \cdot d_{0} \cdot E_{\gamma}^{3})$$

 $E_{\gamma} = \text{primary } \gamma \text{-ray energy (MeV)}$
 $\Gamma_{\gamma} = \text{capture state width (eV)}$
 $\sigma_{\gamma} = \text{primary } \gamma \text{-ray cross section (b)}$
 $\sigma_{0} = \text{total radiative neutron cross section (b)}$
 $d_{0} = \text{average level spacing at S}_{n} \text{ (eV)}$

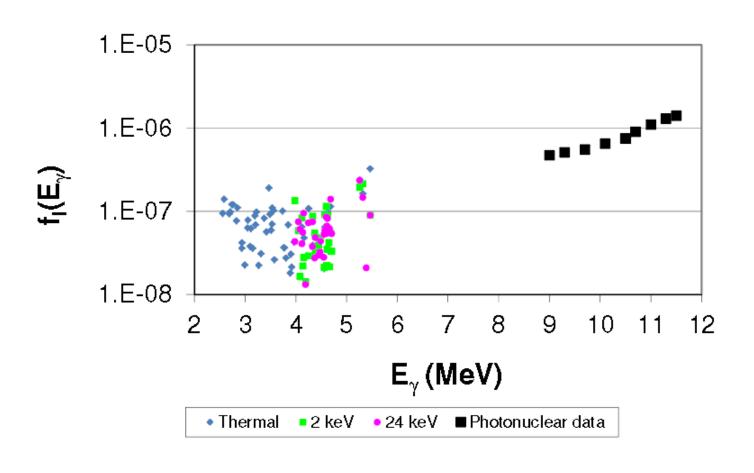
Data sources

$$E_{\gamma}$$
- EGAF or ENSDF
$$\Gamma_{\gamma}, \sigma_0, d_0$$
- Atlas of Neutron Resonances σ_{γ} - EGAF

Example for thermal (n,γ)

¹⁸⁷W photon strengths

Average Resonance Capture Data


A similar determination of γ -ray photon strengths can be done for Average Resonance Capture data assuming

- 1. The primary γ -ray intensity per 100 neutron captures is known.
- 2. The level width Γ_{γ} is the same as for the thermal capture state (good assumption)

$$f(E_{\gamma}) = I_{\gamma} \Gamma_{\gamma} / (100 \cdot d_0 \cdot E_{\gamma}^3)$$

Example for Average ResonanceCapture

¹⁸⁷W photon strengths

Recommendation

ENSDF evaluators should determine either photon strengths $f(E_{\gamma})$ or B(E,M: λ) for primary γ -rays from thermal and ARC datasets.