Implementation of PFNS in EMPIRE

G. P. A. Nobre*, M. Herman, S. Hoblit, A. Palumbo National Nuclear Data Center Brookhaven National Laboratory

> R. Capote International Atomic Energy Agency

> > A. Trkov Jozef Stefan Institute

Nuclear Data Week, Nov. 5-9, 2012

a passion for discovery

Office of Science

*gnobre@bnl.gov

Outline

- Calculation of PFNS in EMPIRE
- Fitting cross sections with Kalman filter
- Differences between fitting cross sections and PFNS
- Extension of Kalman utility to accommodate PFNS fitting
- Results of PFNS fits
- Conclusion

PFNS Calculation in EMPIRE

- Only 1st chance fission implemented in EMPIRE
- Two prompt fission models:
 - Los Alamos (Madland-Nix) though not the latest one!
 - Kornilov
- Four parameters:
 - PFNTKE Scales the total kinetic energy of the fission fragments
 - PFNALP Scales the energy of both the light and heavy fragments
 - PFNRAT Adjusts the ratio of the kinetic energy of the light to heavy fragments
 - PFNERE Scales the total fission energy release
- PFNS independent of and uncorrelated with cross section calculations (1st chance only – 2nd chance will correlate)

Cross-section sensitivity-matrix file

	#9 ı	n + 92-0 -2 3	35 Elast	ic* and None	last∗ modifi	ed for A>220	and En>3.5	MeV (Cross s	
Desetiens	# Paramete	r: UOMPRV	0 1 1 0	variation: +	-0.030 🔰 S	Sensitivity m	atrix		
Reactions	# Einc	Total	Elastic*	Nonelast*	Fission	Mu-bar	Nu-bar	(z,gamma)	
	5.0001E-07	3.5332E-02	-2.1322E-01	3.9447E-02	3.9457E-02	-2.4309E-04	0.0000E+00	3.9414E-02	
	1.0000E-03	-9.5611E-02	-2.3413E-01	4.4698E-02	3.9920E-02	-6.4198E-02	0.0000E+00	6.4282E-02	
	2.0000E-03	-1.1392E-01	-2.3370E-01	5.6385E-02	4.6770E-02	-9.3706E-02	0.0000E+00	9.4539E-02	
	5.0000E-03	-1.2941E-01	-2.3121E-01	9.0488E-02	6.8420E-02	-1.1855E-01	0.0000E+00	1.7096E-01	
	1.0000E-02	-1.3038E-01	-2.2535E-01	1.3805E-01	1.0236E-01	-1.1107E-01	0.0000E+00	2.5428E-01	
	2.0000E-02	-1.1810E-01	-2.1046E-01	2.0214E-01	1.5066E-01	-7.8751E-02	0.0000E+00	3.2698E-01	
	5.0000E-02	-7.4618E-02	-1.6311E-01	2.8541E-01	2.2013E-01	-8.7413E-03	0.0000E+00	2.9836E-01	
	0.10000	-1.6379E-02	-1.1750E-01	3.9162E-01	1.1281E-01	7.9176E-02	0.0000E+00	6.0355E-02	
	0.20000	6.1469E-02	-5.1821E-02	4.4432E-01	-1.0416E-01	1.8407E-01	0.0000E+00	-9.5418E-02	
		1 00405 01	3 1030F 03	D 00705 01	1 05045 01	2 22005 41	0 00005.00	6 70705 40	
ہ ب					-				
ie a					•				
J J J J J J J J J J J J J J J J J J J									
e c:	18.000	4.0/22E-02	1.6951E-02	6.5864E-02	-9.8206E-03	-6./892E-03	0.0000E+00	4.0305E-02	
<u></u> Б Б	19.000	4.9946E-02	3.4349E-02	6.6790E-02	-4.9435E-03	-4.6205E-03	0.0000E+00	4.6762E-02	
	20.000	5.9446E-02	5.2243E-02	6.7334E-02	2.1019E-04	-2.8310E-03	0.0000E+00	4.7065E-02	
					_				
	# 9	n + 92-U -23	35 Elast	tic∗ and None	elast∗ modif.	ied for A>220	and En>3.5	MeV (Cross s	
	# Paramete	r: UOMPVV	0 1 1 0	variation: +	-0.030	Sensitivity m	atrix		
	# Einc	Total	Elastic*	Nonelast	<pre>Fission</pre>	Mu-bar	Nu-bar	(z,gamma)	
	5.0001E-07	3.2431E-01	-1.4557E-01	3.3211E-01	3.3219E-01	-2.1843E-04	0.0000E+00	3.3175E-01	
	1.0000E-03	4.7272E-02	-2.1113E-01	3.0902E-01	3.1035E-01	-1.7912E-02	0.0000E+00	3.0354E-01	
	2.0000E-03	-9.1586E-04	-2.1442E-01	3.0267E-01	3.0377E-01	-2.3164E-02	0.0000E+00	2.9829E-01	
	5.0000E-03	-5.5802E-02	-2.1883E-01	2.9634E-01	2.9602E-01	-1.9886E-02	0.0000E+00	2.9731E-01	
	1.0000E-02	-8.5742E-02	-2.2060E-01	2.9544E-01	2.9369E-01	-5.1391E-03	0.0000E+00	3.0123E-01	
	2.0000E-02	-1.0198E-01	-2.1724E-01	2.9764E-01	2.9489E-01	1.8438E-02	0.0000E+00	2.9835E-01	
	5.0000E-02	-9.7564E-02	-1.9504E-01	2.9905E-01	2.9776E-01	5.3491E-02	0.0000E+00	2.4659E-01	
	0.10000	-7.1001E-02	-1.6958E-01	3.2671E-01	2.4234E-01	9.1152E-02	0.0000E+00	1.2211E-01	
	0.20000	-2.1156E-02	-1.3262E-01	3.5552E-01	1.0872E-01	1.3753E-01	0.0000E+00	-1.0026E-03	
	0 20000	1 70015 00	0 67305 03	3 3CE1E 01	1 70305 03	1 53705 01	4	1 07315 03	
							т		

Cross-section fit, an example

5

PFNS calculation

Using Kalman to fit PFNS

Initial obstacles:

- Different quantities
 - Maxwellian normalization of experimental data
 - Function of E_{out} vs. function of E_{inc}
 - Outgoing energy instead of incident energy
 - Incident energy instead of reaction

Solutions:

- KALMAN does not know
 - Andrej Trkov improved PFNS data extraction from EXFOR file
 - KALMAN does not know Reformatting: Transposing the sensitivity matrix!

Reformatting PFNS Sensitivity-matrix file

Incident energies	# 44 # Parameter # Eemit 1.0000E-11 4.0000E-11 7.0000E-10 4.0000E-10 7.0000E-10 1.0000E-09 4.0000E-09 1.0000E-09 1.0000E-08	02-0-236 PFNTKE 0 5.000E-07 1.9068E-01 1.9068E-01 1.9068E-01 1.9068E-01 1.9068E-01 1.9068E-01 1.9068E-01 1.9068E-01 1.9068E-01 1.9068E-01 1.9068E-01 1.9068E-01	0 0 0 1.9067E-03 1.9067E-01 1.9067E-01 1.9067E-01 1.9067E-01 1.9067E-01 1.9067E-01 1.9067E-01 1.9067E-01 1.9067E-01 1.9067E-01	variation: + 2.000E-03 1.9068E-01 1.9068E-01 1.9068E-01 1.9068E-01 1.9068E-01 1.9068E-01 1.9068E-01 1.9068E-01 1.9068E-01 1.9068E-01	-0.050 S 5.000E-03 1.9067E-01 1.9067E-01 1.9067E-01 1.9067E-01 1.9067E-01 1.9067E-01 1.9067E-01 1.9067E-01 1.9067E-01 1.9067E-01 1.9067E-01	ensitivity n 1.000E-02 1.9063E-01 1.9063E-01 1.9063E-01 1.9063E-01 1.9063E-01 1.9063E-01 1.9063E-01 1.9063E-01 1.9063E-01 1.9063E-01 1.9063E-01	atrix 2.000E-02 1.9059E-01 1.9059E-01 1.9059E-01 1.9059E-01 1.9059E-01 1.9059E-01 1.9059E-01 1.9059E-01 1.9059E-01 1.9059E-01 1.9059E-01	5.000E-02 1.9044E-01 1.9044E-01 1.9044E-01 1.9044E-01 1.9044E-01 1.9044E-01 1.9044E-01 1.9044E-01 1.9044E-01 1.9044E-01	
Outgoing energies	24.500 24.600 24.700 24.800 24.900 25.000	-6.8575E+00 - -6.9303E+00 - -7.0040E+00 - -7.0787E+00 - -7.1542E+00 - -7.2304E+00 -	6.8565E+00 6.9294E+00 7.0031E+00 7.0777E+00 7.1531E+00 7.2294E+00	-6.8557E+00 -6.9286E+00 -7.0022E+00 -7.0768E+00 -7.1522E+00 -7.2286E+00	-6.8529E+00 -6.9261E+00 -6.9997E+00 -7.0742E+00 -7.1495E+00 -7.2257E+00	-6.8487E+00 -6.9218E+00 -6.9954E+00 -7.0699E+00 -7.1450E+00 -7.2211E+00	-6.8404E+00 -6.9131E+00 -6.9866E+00 -7.0610E+00 -7.1360E+00 -7.2119E+00	-6.8152E+00 -6.8875E+00 -6.9606E+00 -7.0344E+00 -7.1092E+00 -7.1847E+00	
	# 44 # Paramete # Eemit 1.0000E-11 4.0000E-11 7.0000E-10 4.0000E-10 7.0000E-10 1.0000E-09	92-U -236 r: PFNALP 0 5.000E-07 -7.0954E-02 - -7.0954E-02 - -7.0954E-02 - -7.0954E-02 - -7.0954E-02 - -7.0954E-02 - -7.0954E-02 - -7.0954E-02 - -7.0954E-02 -	0 0 0 1.000E-03 7.0967E-02 7.0967E-02 7.0967E-02 7.0967E-02 7.0967E-02 7.0967E-02 7.0967E-02 7.0967E-02 7.0967E-02	variation:	-0.050 S 5.000E-03 -7.0949E-02 -7.0949E-02 -7.0949E-02 -7.0949E-02 -7.0949E-02 -7.0949E-02 -7.0949E-02 -7.0949E-02 -7.0949E-02	ensitivity n 1.000E-02 -7.0943E-02 -7.0943E-02 -7.0943E-02 -7.0943E-02 -7.0943E-02 -7.0943E-02 -7.0943E-02 -7.0943E-02 -7.0943E-02	atrix 2.000E-02 -7.0932E-02 -7.0932E-02 -7.0932E-02 -7.0932E-02 -7.0932E-02 -7.0932E-02 -7.0932E-02 -7.0932E-02 -7.0932E-02	5.000E-02 -7.0888E-02 -7.0888E-02 -7.0888E-02 -7.0888E-02 -7.0888E-02 -7.0888E-02 -7.0888E-02 -7.0888E-02	•••

PFNS fit – Los Alamos model

PFNS sensitivity plot – Los Alamos model

PFNS fits – Los Alamos and Kornilov models

Fitting PFNS through Kalman filter enabled to improve description of experimental data for both models!

PFNS parameter correlation – ²³⁵U

Final values for the parameters

Parameter	Los Alamos model	Kornilov model
PFNTKE	1.0084E + 0	1.1315E + 0
PFNALP	9.3971 E-1	8.9950E-1
PFNRAT	8.5436E-1	9.4934E-1
PFNERE	1.0157E + 0	1.1129E + 0

Parameter correlations for both models:

		1	2	3	4			1	2	3	4
1PFNTKE000000	1.03E+00	1000				1PFNTKE000000 1	.13E+00	1000			
2PFNALP000000	9.88E-01	-740	1000			2PFNALP000000 8	.99E-01	-526	1000		
3PFNRAT000000	9.56E-01	779	-223	1000		3PFNRAT000000 9	.49E-01	298	612	1000	
4PFNERE000000	1.03E+00	963	-877	585	1000	4PFNERE000000 1	.11E+00	948	-766	-13	1000
Parame L	eter corro os Alam	Parameter Ko	r correla ornilov r	ation node	s for el	the					

PFNS correlations – ²³⁵U

Conclusion

- Calculation of 1st chance prompt fission spectra was incorporated in EMPIRE
- Two models were implemented:
 - Los Alamos model
 - Kornilov model
- We are now able to fit PFNS parameters to experimental data, for any Maxwellian normalization, for either model
- This allowed also to obtain:
 - Sensitivities to PFNS parameters
 - Correlations and covariances (both for parameters and PFNS)
 - Uncertainties (both for parameters and PFNS)
- Still independent from cross sections calculations