

COMMARA-3 Processed ENDF/B-VII.1 covariance library

S. Hoblit National Nuclear Data Center Brookhaven National Laboratory

hoblit@bnl.gov

U.S. DEPARTMENT OF ENERGY

Brookhaven Science Associates

Commara 2.0 materials

- 110 materials most relevant to fast reactor R&D
 - 12 light nuclei (LANL)
 - 78 structural materials (BNL)
 - 20 major and minor actinides (LANL + BNL)
- 135 files
 - 110 cross section covariances,
 - 20 nubars,
 - -3 PFNS,
 - 2 mubars

H	28 Si	⁹² Mo	209 Ag	149Sm	252Th
^{2}H	23 Si	94 Mo	127I	151 Sm	233 U
4He	³⁰ Si	99 Mo	129I	152Sm	^{234}U
⁶ Li	⁵⁰ Cr	⁹⁶ Mo	¹³¹ Xe	153Eu	238 U
² Li	^{52}Cr	97 Mo	^{132}Xe	¹⁵⁵ Eu	^{236}U
⁹ Be	53 Cr	98 Mo	^{134}Xe	123Gd	238 U
^{10}B	³⁵ Mn	100 Mo	133Cs	¹⁵⁶ Gd	²³⁷ Np
11 B	⁵⁴ Fe	⁹⁹ Te	135 Cs	¹⁵⁷ Gd	²³⁸ Pu
^{12}C	⁵⁶ Fe	101 Ru	139La	158Gd	239Pu
15N	⁵⁷ Fe	102 Ru	^{140}Ce	¹⁶⁰ Gd	²⁴⁰ Pu
¹⁶ O	⁵⁸ Ni	103 Ru	¹⁴¹ Pr	166Er	243 Pu
^{19}F	⁶⁰ Ni	104 Ru	143 Nd	¹⁶⁷ Er	242 Pu
23 Na	⁹⁰ Zr	106Ru	145Nd	168Er	^{241}Am
^{24}Me	⁹¹ Zr	103 Rh	146Nd	¹⁷⁰ Er	242mAm
²⁵ Mg	⁹² Zr	105 Pd	¹⁴⁸ Nd	²⁰⁴ Pb	²⁴³ Am
^{26}Me	93Zr	106Pd	147 Pm	206 Pb	242 Cm
27 AI	94 Zr	107 Pd		207 Pb	243 Cm
	95Zr	108 Pd		²⁰⁸ Pb	244 Cm
	⁹⁶ Zr			²⁰⁹ Bi	245 Cm
	⁹⁶ Nb				246Cm

ENDF/B VII.1 covariance materials

184 materials: 12 Light, 99 structural, 73 Actinides

- ¹H, ²H, ⁴He, ⁶Li ⁷Li, ⁹Be, ¹⁰B, ¹¹B, ⁰C, ¹⁵N, ¹⁶O, ¹⁹F, ²⁴Mg, ²⁵Mg, ²⁶Mg, ²⁷Al, ²⁸Si, ²⁹Si, ³⁰Si, ³⁵Cl, ³⁷Cl, ³⁹K, ⁴¹K, ⁴⁶Ti, ⁴⁷Ti, ⁴⁸Ti, ⁴⁹Ti, ⁵⁰Ti, ⁵⁰Cr, ⁵²Cr, ⁵³Cr, ⁵⁴Cr, ⁵⁵Mn, ⁵⁴Fe, ⁵⁶Fe, ⁵⁷Fe, ⁵⁹Co, ⁵⁸Ni, ⁶⁰Ni, ⁸⁹Y, ⁹⁰Zr, ⁹¹Zr, ⁹²Zr, ⁹³Zr, ⁹⁴Zr, ⁹⁵Zr, ⁹⁶Zr, ⁹⁵Nb, ⁹²Mo, ⁹⁴Mo, ⁹⁵Mo, ⁹⁶Mo, ⁹⁷Mo, ⁹⁸Mo, ¹⁰⁰Mo, ⁹⁹Tc, ¹⁰¹Ru, ¹⁰²Ru, ¹⁰³Ru, ¹⁰⁴Ru, ¹⁰⁶Ru, ¹⁰⁵Pd, ¹⁰⁷Pd, ¹⁰⁸Pd, ¹⁰⁹Ag, ¹²⁷I, ¹²⁹I, ¹³¹Xe, ¹³²Xe, ¹³⁴Xe, ¹³³Cs, ¹³⁵Cs, ¹³⁹La, ¹⁴¹Ce, ¹⁴¹Pr, ¹⁴³Nd, ¹⁴⁵Nd, ¹⁴⁶Nd, ¹⁴⁸Nd, ¹⁴⁷Pm, ¹⁴⁹Sm, ¹⁵¹Sm, ¹⁴²Sm, ¹⁵³Eu, ¹⁵⁵Eu, ¹⁵²Gd, ¹⁵³Gd, ¹⁵⁴Gd, ¹⁵⁵Gd, ¹⁵⁶Gd, ¹⁵⁷Gd, ¹⁵⁸Gd, ¹⁶⁰Gd
- ¹⁶⁶Er, ¹⁶⁷Er, ¹⁶⁸Er, ¹⁷⁰Er, ¹⁸⁰W, ¹⁸²W, ¹⁸³W, ¹⁸⁴W, ¹⁸⁶W, ¹⁹¹Ir, ¹⁹³Ir, ¹⁹⁷Au, ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²⁰⁹Bi, ²²⁵Ac, ²²⁶Ac, ²²⁷Ac, ²²⁷Th, ²²⁹Th, ²³⁰Th, ²³¹Th, ²³²Th, ²³³Th, ²³⁴Th, ²²⁹Pa, ²³⁰Pa, ²³²Pa, ²³⁰U, ²³¹U, ²³²U, ²³³U, ²³⁴U, ²³⁵U, ²³⁶U, ²³⁸U, ²³⁴Np, ²³⁵Np, ²³⁶Np, ²³⁷Np, ²³⁸Np, ²³⁹Np, ²³⁶Pu, ²³⁷Pu, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, ²⁴⁴Pu, ²⁴⁶Pu, ²⁴⁰Am, ²⁴¹Am, ^{242m1}Am, ²⁴³Am, ²⁴⁰Cm, ²⁴¹Cm, ²⁴²Cm, ²⁴³Cm, ²⁴⁴Cm, ²⁴⁵Cm ²⁴⁶Cm, ²⁴⁸Cm, ²⁴⁹Cm, ²⁵⁰Cm, ²⁴⁵Bk, ²⁴⁶Bk, ²⁴⁷Bk, ²⁴⁸Bk, ²⁵⁰Bk, ²⁴⁶Cf, ²⁴⁹Cf, ²⁵⁰Cf, ²⁵¹Cf, ²⁵²Cf, ²⁵³Cf, ²⁵⁴Cf, ²⁵¹Es, ²⁵²Es, ²⁵³Es, ²⁵⁴Es. ²⁵⁴m¹Es. ²⁵⁵Es, ²⁵⁵Fm

CSEWG Covariances

Scope

- Associated with neutron cross sections from ENDF/B-VII.1
- Multigroup (processed) covariances with uniform lethargy energy groups (33 groups, flux: thermal-1/E-fiss spec)
- Reaction channels:
 - (n,el), (n,inl), (n,2n), (n,γ)
 - (n,f) & nubar MF31 (73)
 - prompt fission neutron spectra (PFNS, ^{238,239,240}Pu LANL, JENDL-4 MF35 (85)
 - Mubars MF34 (116 & additional from JENDL)

Methodology

- Covariance evaluation methodology determined by priorities:
 - -Most important materials treated individually
 - -Medium importance materials treated with simplified methods
 - Low priority materials (mostly fission products) treated with low-fidelity type approach

Methodology

Thermal and Resonance Region

- •Source of data
- •Experiments
- •ENDF file (retroactive method)
- •Atlas of Neutron Resonances (ANR)
- •SAMMY analysis
- •full analysis (MF32, Exp. data)
- •retroactive (MF32, ENDF file)
- •EMPIRE Resonance Module (MF32, ANR, scattering radius and thermal point uncertainties reproduced through correlations (if possible)
- •"Kernel Approximation" (MF33, ANR)
- •MF32 with systematic uncertainties in MF33
- •'low-fidelity' (Mark Williams) solution
- Assimilation

Fast neutron range (MF33)

- EMPIRE/KALMAN considering experimental data
- Least Square fitting of experimental data (SOK code)
- EMPIRE/KALMAN without experimental data (Low-Fidelity)
- Dispersion analysis differences among evaluations (and exp. data)
- Reconsider previous work (ENDF/B-VI.8, Low-Fidelity)
- Visual analysis of experimental data
- Assimilation

6

Quality Assurance

- New web-based Sigma-QA (A. Sonzogni) allows visual and also quantitative inspection of:
 - Differential uncertainties (dynamic)
 - Integral uncertanties (static)
- UnCor applied to full library, performs 8 tests, warnings for possible problems including:
 - small uncertainties: (n,tot)<1%, (n,el) and (n, γ)<2%, etc.
 - non-positive-definite matrices (fixable for all but PFNS)
 - PFNS covariance not summing to zero (not usually a problem)
- non-positive-definite matrices are usually fixable by slightly reducing the off-diagonal elements. If not, more drastic measures may be required.

BNL, Nov 8, 2012

7

²⁸Si integral quantities from Sigma-QA (A. Sonzogni)

²⁸Si elastic integral quantities from Sigma-QA

Elastic						
Library	THERMAL	RI 0.5-2E+7 eV	MACS 30 keV	²⁵² Cf	14 MeV	R' (fm)
ENDF/B-VII.0	1.992	3.882E+1	2.382	2.871	6.620E-1	4.136
JEFF3.1	1.992	3.885E+1	2.382	2.854	6.969E-1	4.136
JENDL4.0	1.992	3.904E+1	2.382	2.902	7.400E-1	4.136
ROSFOND	1.992	3.885E+1	2.382	2.854	6.969E-1	4.136
ENDF/B-VI.8	1.992	3.882E+1	2.382	2.871	6.620E-1	4.136
CENDL3.1	1.992	3.879E+1	2.382	2.884	6.424E-1	4.136
Atlas	1.992					4.800
Atlas ∆	6.000E-3 3.01E-1%					2.000E-1 4.16%
AFCI2.0 Δ	1.992E-2 1.00%	9.587E-1 2.46%	1.540E-1 6.46%	1.351E-1 4.70%	5.435E-2 8.20%	
Recommended ∆	6.000E-3 3.01E-1%					3.073E-1 7.43%

CSEWG Covariances

BNL, Nov 8, 2012

9

⁶⁰Ni capture integral quantities from Sigma-QA

Capture					
Library	THERMAL	RI 0.5-2E+7 eV	MACS 30 keV	²⁵² Cf	14 MeV
ENDF/B-VII.0	2.772	1.412	2.826E-2	4.022E-3	2.859E-4
JEFF3.1	2.772	1.412	2.826E-2	6.033E-3	7.558E-4
JENDL4.0	2.913	1.472	2.792E-2	6.172E-3	6.992E-5
ROSFOND	2.772	1.412	2.826E-2	6.033E-3	7.558E-4
ENDF/B-VI.8	2.772	1.406	2.826E-2	4.022E-3	2.859E-4
CENDL3.1	2.772	1.413	2.826E-2	5.825E-3	1.131E-3
KADoNiS			2.990E-2		
Atlas	2.500	1.400			
Kadonis ∆			7.000E-4 2.34%		
Atlas ∆	6.000E-2 2.40%	2.000E-1 1.42E+1%			
AFCI2.0 Δ	1.386E-1 5.00%	1.183E-1 8.37%	1.811E-3 6.40%	2.902E-4 7.21%	6.591E-5 2.30E+1%
Recommended ∆	1.430E-1 5.15%	2.017E-1 1.42E+1%	7.968E-4 2.81%		

CSEWG Covariances

BNL, Nov 8, 2012

10

Example of Sigma-QA plot

Quality Assurance (continued)

 Code 'unCor', (Mattoon, Oblozinsky) checks the library for possible problems in uncertainties and/or correlations

Uncertainties too large: 19 total

MT16 in 001_H_002, max = 100.00% 1T102 in 003_Li_007, max = 100.00% in 005_B_010, max = 100.00% 1T102 in 040_Zr_090, max = 100.00% 1T102 in 040_Zr_095, max = 100.00% in 040_Zr_095, max = 100.00% in 090_Th_232, max = 100.00% 1T852 in 090_Th_232, max = 100.00% in 092_U_238, max = 100.00% 1T102 in 094_Pu_238, max = 100.00% in 094_Pu_238, max = 100.00% 1T102 in 094_Pu_240, max = 100.00% MT102 in 094_Pu_241. max = 100.00% 1T102 in 094_Pu_242, max = 100.00% MT102 in 095_Am_242m, max = 100.00% 1T102 in 096_Cm_242, max = 100.00% in 096_Cm_242, max = 100.00% in 096_Cm_242, max = 100.00% MT102 in 096_Cm_244, max = 100.00% Uncertainties too small: 55 total in 001_H_001, min = 0.29% in bin 33 (27 bins < 1%) MT1 in 001_H_001, min = 0.30% in bin 12 (27 bins < 1%) MT2 in 002_He_004, min = 0.50% in bin 11 (28 bins < 1%) MT1 in 002_He_004, min = 0.50% in bin 11 (28 bins < 1%) MT2 in 003_Li_006, min = 0.20% in bin 30 (21 bins < 1%) MT1 MT105 in 003_Li_006, min = 0.20% in bin 18 (25 bins < 1%) in 003_Li_007, min = 0.27% in bin 3 (7 bins < 1%) MT1 in 003_Li_007, min = 0.42% in bin 4 (6 bins < 1%) in 004_Be_009, min = 0.50% in bin 24 (14 bins < 1%) in 004_Be_009, min = 0.50% in bin 24 (14 bins < 1%)

CSEWG Covariances

Uncor results

• Test for small uncertainties:

Total with small uncertainties : 173

Reaction	Max %unc
(n,total)	1.0
(n.elas)	2.0
(n.inel)	3.0
(n,2n)	3.0
(n,f)	0.7
(n,g)	2.0
Total nubar	0.7
Prompt nubar	0.7
other	2.0

CSEWG Covariances

Uncor results (cont.)

- 2nd test for too small uncertainties:
 - If cross section < 3mb, min uncert = 25% Total materials : 127
- Optical model peaks in elastic: 44
- Zero unc with non-zero cross section: 98
- Peaks/jumps in uncertainties: 55
- Negative eigenvalues : only PFNS (small)

¹⁹F

S. Hoblit

NND

 ^{23}Na

Reverted to ENDF/B-VII.0 COMMARA 2.0 Covariances backported, w/ modifications

52**C**r

New ORNL ${\color{black}\bullet}$ **RRR** evaluation

233U

235U

New MF33 eval by LANL/ORNL

NNDO

²³⁹Pu

New MF33 eval by LANL/ORNL

NNDO

²⁴²Pu

243 Cm

Nubar covariances

²³⁹Pu

From LANL

CSEWG Covariances NATIONAL LABORATORY

23

Mubar covariances

CSEWG Covariances

Developing crossisotope cross-reaction covariances

- EXFOR contains many forms of coupled cross section data:
 - reaction combinations
 - reactions on elemental targets
 - non-elastic data
 - ratios to monitors (unused)
 - "isomers math" (unused)
- Goal: Refit all COMMARA-2.0 priority cross sections simultaneously
 - 33-group structure

Brookh

- ENDF/B-VII.1 covariances for prior
 - includes "on-diagonal" covariance
 - includes standards "off-diagonals"
- use EXFOR entry's REACTION string to construct linearized kernel

End product is covariance, not mean values

Summary

- ENDF/B-VII.1 released Dec 2011
- Files tested using Sigma-QA and UnCor procedures for Quality Assurance
- ENDF files processed with NJOY using AFCI 33-group structure, flux = thermal, 1/E, fiss spec (E>100 keV)
- Subset used for COMMARA-3.0 in SG33 format

CSEWG Covariances

33-group structure

- AFCI is a processed covariance library, using 33 energy bins.
- Group boundaries chosen so that in most cases, ln(E₂/E₁)=0.5

28

Which materials to include/modify

- Include all materials with covariance data from ENDF/B-VII.1?
- Only replace materials in COMMARA-2.0?
- Limit max uncertainty to 100%?
- Place any limits on minimum uncertainties?
- Same reaction channels SG33?

Contents of Library

- Major Actinides produced by LANL/ORNL
 ^{233,235,238}U, ²³⁹Pu simultaneous evaluation
- Structural materials produced by BNL
 ²³Na, ⁵²Cr, ⁵⁶Fe, ⁵⁸Ni, Pb, Bi, ...
- Light nuclei from LANL/ORNL (R-matrix, also low-fi)
- Minor Actinides partly based on V. Maslov estimates, partly on BNL and LANL efforts, JENDL
- Fission products most based on low-fidelity covariances
- Mubar covariances for ²³Na, ⁵⁶Fe
- Prompt fission neutron spectra for ^{238,239,240}Pu

CSEWG Covariances

Integral Weightings

