

Covariance Activities at KAERI

Young-Sik Cho Korea Atomic Energy Research Institute

Contents

- Covariance evaluations at resonance region
 - Kercen with MLBW formalism
 - Sample calculations for ⁵⁵Mn.
- Covariance evaluations at high energy region
 Covariance evaluations with EMPIRE-KALMAN
 Results for ²³⁷Np and ²⁴⁰Pu

Resonance region - KERCEN KERCEN Updated

한국원자력연구원 KAERI 한국원자력연구원

- Originally developed by BNL+KAERI to generate covariances at the resonance region using kernel approximation to address some issues:
 - File 32 processing issues such as
 - decline of uncertainties after collapsing covariances into multigroup representations.
 - discrepancies between NJOY and PUFF in processing File 32.
 - Proper handling of scattering radius uncertainty.

- Recently updated to accommodate the MLBW formalism in addition to kernel approximation.
- One of its purposes is to validate kernel approximation, with more accurate formalism but based on the similar methodology.
- Uses a transparent formalism (using kernel approximation or new MLBW) based on resonance parameter uncertainties from the Atlas of Neutron Resonances.
- > Handles scattering radius uncertainty explicitly.
- Produces MF33 bypassing MF32 processing issues.
- Correlations have to be supplied by an evaluator.

Resonance region - KERCEN

Error Propagation Equation

Uncertainty of average cross section

$$<\!\delta\overline{\sigma}\delta\overline{\sigma}\!>=\sum_{i,r,i',r'}\frac{\partial\overline{\sigma}}{\partial p_{i,r}}<\!\delta\!p_{i,r}\delta\!p_{i',r'}\!>\!\frac{\partial\overline{\sigma}}{\partial p_{i',r'}},$$

where $\langle \delta p_{i,r} \delta p_{i',r'} \rangle$ is covariance of resonance parameters.

Sensitivity

$$\frac{\partial \overline{\sigma}}{\partial p_{i,r}} = \sum_{r'} \frac{\partial \overline{\sigma}_{r'}}{\partial p_{i,r}} = \frac{\partial \overline{\sigma}_{r}}{\partial p_{i,r}} \quad \text{where } i = \gamma, n \quad \text{(kernel)}$$

In KERCEN, entire resonance energy region is divided into smaller regions called bin. Resonance-potential scattering, scattering-scattering, capture-capture and scattering-capture and bin-bin correlations are supplied as input. Resonance region - KERCEN Multilevel Breit-Wigner (1) 한국원자력연구원 KAERI Korea Atomic Energy Research Institute

Average cross section (in the arbitrary energy bin)

for capture

for scattering

$$\sigma_n(E) = \frac{\pi}{k^2} \sum_l \left[\sum_J g_J \left\{ \left(1 - 2\cos 2\phi_l - \sum_r \frac{\Gamma_{nr}}{\Gamma_r} \frac{2}{1 + x_r^2} \right)^2 + \left(\sin 2\phi_l + \sum_r \frac{\Gamma_{nr}}{\Gamma_r} \frac{2x_r}{1 + x_r^2} \right)^2 \right\} + 2D_l (1 - \cos 2\phi_l) \right]$$
$$\overline{\sigma_n} = \frac{1}{\Delta E} \int_{E_l}^{E_2} \sigma_n(E) dE$$

Resonance region - KERCEN Multilevel Breit-Wigner (2)

Sensitivity to a resonance parameter

for capture

Resonance region - Results ⁵⁵Mn, capture

Resonance region - Results ⁵⁵Mn, scattering

Resonance region - Results

Resonance region - Results

⁵⁵Mn, scattering (Kernel vs. MLBW)

Resonance region - Results

⁵⁵Mn, scattering (Kernel vs. MLBW)

Resonance region - Results Covariances for ⁵⁵Mn

High energy region – Method and output

Covariance Evaluations (H.I. Kim)

EMPIRE-KALMAN used

Covariances above resonances

- Sensitivity matrices from 5 ~ 10 % variations of model parameters around optimal value
- Using uncertainties of measurements if available
- Using pseudo data with 10% uncertainty for the cross section of model calculation if no measurement is available

Covariance files in ENDF-6

- MF33 generated
 - MT=1,2,4,16,17,18,22,24,(51-91),102,103,107
- □ MF32 from ORNL for (²³⁷Np, ²⁴⁰Pu, ²⁴⁴Cm)
- Getting from JENDL-4 (nu-bar, fission neutron spectra, MF 31)

High energy region – Experimental data Experimental Data

²³⁷ Np		²⁴⁰ Pu	
total	Kornilov, Lychagin, Auchampaugh	total	Poenitz, Smith
elastic	Hoffman (?)	elastic	Smith
capture	Esch, Buleeva, Trofimov, Weston, Lindner, Stupegia, Hoffman	capture	Ivanov, Weston
fission	Basunia,Lisowski, Paradela, Cennini, Scherbakov, Meadows, Kobayashi, Jiacoletti, Brown, White,	fission	Tovesson, Laptev, Gul, Aleksandrov, Cance, Meadows, Khan, Kari, Fomushkin, White, Ruddick, Nesterov, Henkel,
(n,2n)	Gromova, Nishi, Landrum, Paulson		
(n,p)	Coleman		

✓ Problems

Too small uncertainties by too many measured data

Increasing uncertainties using scaling factor based on systematic errors if available or eye-guide No measured data

Introducing pseudo -data

High energy region - Results Results - total & Elastic

High energy region - Results

Results - Capture & (n,2n)

High energy region - Results Results - Fission

High energy region - Results Results - Inelastic

Conclusions

Resonance region:

- KERCEN has been updated to accommodate the MLBW formalism. It
 - uses transparent formalism,
 - bypasses File 32 processing issues,
 - handles scattering radius uncertainty explicitly,
 - takes inference effects into account.
- KERCEN has been tested for evaluating cross section uncertainties for the structural material, ⁵⁵Mn.

High energy region:

- Neutron cross section files of ²³⁷Np and ²⁴⁰Pu at high energy region have been produced.
- Covariance matrices for ²³⁷Np and ²⁴⁰Pu were generated by the EMPIRE-KALMAN approach considering sensitivity matrices of model calculations and uncertainties of experimental data