

#### U.S. DEPARTMENT OF ENERGY USE CALIFORNIA





# Thermal Neutron Capture of 64,66Cu

Andrew M. Rogers Nuclear Science Division Lawerence Berkeley National Laboratory

USNDP / CSEWG 11-08-2012

### Outline

#### BERKELEY LAB Lawrence Berkeley National Laboratory

### Introduction

- Motivation and method
- DICEBOX
- Experimental setup (Budapest research reactor)
- Preliminary analysis  ${}^{65}Cu(n,\gamma){}^{66}Cu$
- Summary and outlook

| $\begin{array}{c} 62Cu \\ 9.673 M \\ \epsilon: 100.00\% \\ \end{array} \begin{array}{c} 63Cu \\ STABLE \\ 69.15\% \\ \epsilon: 61.50\% \\ \beta-: 38.50\% \\ \end{array} \begin{array}{c} 65Cu \\ STABLE \\ 30.85\% \\ \beta-: 100.00\% \\ \end{array} \begin{array}{c} 66Cu \\ 5.120 M \\ \beta-: 100.00\% \\ \end{array} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 63Zn<br>38.47 M<br>€ 100.00%     | 64Zn<br>≿7.0E20 Y<br>49.17%<br>2¢ | 65Zn<br>243.93 D<br>€: 100.00%              | 66Zn<br>STABLE<br>27.73%  | 672n<br>STABLE<br>4.04%         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|---------------------------------------------|---------------------------|---------------------------------|--|
| $ \begin{array}{c} \begin{array}{c} 61 \text{Ni} \\ \text{STABLE} \\ 1.1399\% \end{array} & \begin{array}{c} 62 \text{Ni} \\ \text{STABLE} \\ 3.6346\% \end{array} & \begin{array}{c} 63 \text{Ni} \\ 101.2 \text{ Y} \\ \beta = 100.00\% \end{array} & \begin{array}{c} 64 \text{Ni} \\ \text{STABLE} \\ 0.9255\% \end{array} & \begin{array}{c} 65 \text{Ni} \\ 2.5175 \text{ H} \\ \beta = 100.00\% \end{array} \\ \begin{array}{c} \beta = 100.00\% \end{array} & \begin{array}{c} 0.3522\% \\ 3.6346\% \end{array} & \begin{array}{c} \beta = 100.00\% \\ & \begin{array}{c} \beta = 100.00\% \\ \end{array} & \begin{array}{c} \beta = 100.00\% \\ & \begin{array}{c} \beta = 100.00\% \\ \end{array} $ & \begin{array}{c} \beta = 100.00\% \\ \end{array}  & \begin{array}{c} \beta = 100.00\% \\ \end{array} & \begin{array}{c} \beta = 100.00\% \\ \end{array}  & \begin{array}{c} \beta = 100.00\% \\ \end{array} & \begin{array}{c} \beta = 100.00\% \\ \end{array} & \begin{array}{c} \beta = 100.00\% \\ \end{array} & \begin{array}{c} \beta = 100.00\% \\ \end{array} & \begin{array}{c} \beta = 100.00\% \\ \end{array} & \begin{array}{c} \beta = 100.00\% \\ \end{array}  & \begin{array}{c} \beta = 100.00\% \\ \end{array} & \begin{array}{c} \beta = 100.00\% \\ & \begin{array}{c} \beta = 100.00\% \\ \end{array} & \begin{array}{c} \beta = 100.00\% \\ \end{array}  & \begin{array}{c} \beta = 100.00\% \\ \end{array} & \begin{array}{c} \beta = 100.00\% \\ \end{array}  & \begin{array}{c} \beta = 100.00\% \\ & \begin{array}{c} \beta = 100.00\% \\ \end{array}  & \begin{array}{c} \beta = 100.00\% \\ \end{array}  & \begin{array}{c} \beta = 100.00\% \\ & \begin{array}{c} \beta = 100.00\% \\ \end{array}  & \begin{array}{c} \beta = 100.00\% \\ & \begin{array}{c} \beta = 100.00\% \\ \end{array}  & \begin{array}{c} \beta = 100.00\% \\ & \begin{array}{c} \beta = 100.00\% \\ \end{array}  & \begin{array}{c} \beta = 100.00\% \\ & \begin{array}{c} \beta = 100.00\% \\ & \begin{array}{c} \beta = 100.00\% \\ \end{array} | 62Cu<br>9.673 M<br>€: 100.00%    | 63Cu<br>STABLE<br>69.15%          | 64Cu<br>12.701 H<br>ε: 61.50%<br>β-: 38.50% | 65Cu<br>STABLE<br>30.85%  | 66Cu<br>5.120 M<br>β-: 100.00%  |  |
| $(n,\gamma)^{66}$ Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 61Ni<br>STABLE<br>1.1399%        | 62Ni<br>STABLE<br>3.6346%         | 63Ni<br>101.2 Υ<br>β-: 100.00%              | 64Ni<br>STABLE<br>0.9255% | 65Ni<br>2.5175 H<br>β-: 100.00% |  |
| I( <i>n</i> ,γ) <sup>66</sup> Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tor)                             | 62Ni<br>STABLE<br>3.6346%         | 63M<br>101.2 Y<br>8-: 100.00%               | 64Ni<br>STABLE<br>0.9255% | 65M<br>2.5175 H<br>8-: 100.00%  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ı( <i>n</i> ,γ) <sup>66</sup> Cu |                                   |                                             |                           |                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                                   |                                             |                           |                                 |  |

# **Motivation and Method**

- General improvements in the total radiative neutron-capture cross sections ( $\sigma_0$ ).
- Constrain spins, search for new transitions, and etc..
- <u>Method:</u>
  - Experimental data of thermal  $(n,\gamma)$  cross sections on *elemental* Copper samples.
  - Generate simulated neutron capture decay schemes using the statistical decay code DICEBOX.
  - Compare measured *depopulation* from experiment to the population of levels generated by DICEBOX.

$$\sigma_0 = \Sigma \sigma_{\gamma}^{\exp}(\text{g.s.}) + \Sigma \sigma_{\gamma}^{\sin}(\text{g.s.})$$

## DICEBOX





- Simulates spectra of nuclear *y* cascades using Monte Carlo methods.
- Below a *critical energy*, *E*<sub>crit</sub>, the spectrum is considered to be complete.
- Above *E*crit,
  - Sets of levels are generated from a known level-density formula ρ(E,J<sup>π</sup>)
  - Samples and incorporates uncertainties due to Porter-Thomas fluctuations.

Andrew M. Rogers

## **Experimental setup - research reactor**



- 10-MW Budapest research reactor
- Guided thermal-neutron beam
- Thermal flux: ~10<sup>6</sup> cm<sup>-2</sup>s<sup>-1</sup>
- Cold flux:  $\sim 10^7 \text{ cm}^{-2}\text{s}^{-1}$
- PGAA (Prompt Gamma Activation Analysis)
- Primary and secondary capture γ rays measured in low-background environment.
- No epithermal, fast, or highenergy neutrons!!!



## **Experimental setup - beamline**





• Compton-suppressed, shielded with BGO detectors.

366

Ø 180

## **Experimental setup - beamline**





- Experimental setup is located ~35 m from the reactor wall.
- HpGe detector (closed-end coaxial) located ~23 cm from target.
- Compton-suppressed, shielded with BGO detectors.



#### **Copper (** $n,\gamma$ **) thermal-capture spectrum**





### <sup>66</sup>Cu ENSDF level scheme





- Last evaluation done in 2009.
- Low-lying  $2^{nd}$  excited state at 238 keV has unknown  $J^{\pi}$ .
- Total thermal-neutron capture cross section (S.F. Mughabghab 2006)

 $\sigma_0 = 2.17 \pm 0.03 \text{ b}$ S<sub>n</sub> = 7066.7±0.8 keV

<sup>65</sup>Cu spin state 3/2<sup>-</sup>

• RIPL: 
$$E_{crit} = 186 \text{ keV}$$
  
 $J^{\pi} = 2^{-1}$ 

## <sup>66</sup>Cu DICEBOX: ENSDF and RIPL





- Included 22 levels
- $E_{\rm crit} = 1547.4 \, \rm keV$
- Poorly reproduces the DICEBOX calculations.
- Total-capture cross section

 $\sigma_0$  = 2.19±0.05 b

Andrew M. Rogers





Andrew M. Rogers



Andrew M. Rogers

USNDP/CSEWG

.....



Andrew M. Rogers

USNDP/CSEWG

.....



Andrew M. Rogers

USNDP/CSEWG

.....

















### <sup>66</sup>Cu DICEBOX capture-state spin fraction





- Consistent with a dominant  $J^{\pi}=2^{-}(99\%)$  capture state fraction.
- In agreement with thermal neutron-capture measurements of M.G. Delfini et al. Nuclear Physics A404 (1983)

## <sup>66</sup>Cu DICEBOX results: $E_{crit}$ = 1009 keV



Andrew M. Rogers

USNDP/CSEWG

m

## <sup>66</sup>Cu DICEBOX results: *E*<sub>crit</sub> = 1009 keV



Andrew M. Rogers

USNDP/CSEWG

.....



- Low-lying  $2^{nd}$  excited state is consistent with a spin assignment of J=0.
- 386-keV excited state tentative 1<sup>+</sup> assignment.
- Consistency between the experimental data and simulated cascades for  $E_{crit}$  = 823 keV and possibly raised to 1009 keV.
- Good agreement of total thermal capture cross section with previous measurements.

 $\sigma_0 = 2.27 \pm 0.08 \text{ b} (2.17 \pm 0.03 \text{ b})$ 

- Explore the effects of additional models and parameters.
- Continue analysis for  ${}^{63}Cu(n,\gamma){}^{64}Cu$



- LBL: R.B. Firestone, A.M. Hurst, M.S. Basunia LLNL: B.W. Sleaford, N.C. Summers, and J.E. Escher
- **ISI Budapest**: Zs. Revay, L. Szentmiklosi, and T. Belgya

### <sup>66</sup>Cu DICEBOX capture-state spin fraction





- Consistent with a dominant  $J^{\pi}=2^{-}$  (99%) capture state fraction.
- In agreement with thermal neutron-capture measurements of M.G. Delfini et al. Nuclear Physics A404 (1983)

(1-,2-)=(75%,25%)

#### <sup>66</sup>Cu DICEBOX capture-state spin fraction



(1-,2-)=(75%,25%)

(1-,2-)=(50%,50%)

- Consistent with a dominant  $J^{\pi}=2^{-}(99\%)$  capture state fraction.
- In agreement with thermal neutron-capture measurements of M.G. Delfini et al. Nuclear Physics A404 (1983)