PFNS: Consistent Evaluations, UQ, and Propagation of Uncertainties

^{1,2}M. E. Rising, ¹P. Talou, ²A. K. Prinja,

¹T. Kawano, and ³M. White

¹T-2 Theoretical Division Los Alamos National Laboratory

²Department of Chemical and Nuclear Engineering University of New Mexico

> ³XCP-5 Applied Physics Division Los Alamos National Laboratory

LA-UR-12-25986

UNCLASSIFIED

Slide 1

Operated by Los Alamos National Security, LLC for NNSA

Motivation

Uncertainty Quantification:

- Nuclear application community in need of nuclear data uncertainties
- Nuclear data: cross sections, angular distributions, prompt fission neutron spectra, etc.
- Importance: cross section uncertainties ~ PFNS uncertainties
- Update/include PFNS evaluations in ENDF/B-VII library
 - Theoretical model changes
 - New experimental results

Uncertainty Propagation:

- Nuclear data uncertainties are meaningless unless impact on applications is quantified
- Feedback to nuclear data community: theoretical physics, experimental measurements, correlations in older experiments, etc.

UNCLASSIFIED

Slide 2

Operated by Los Alamos National Security, LLC for NNSA

Systematic Evaluation and UQ of Prompt Fission Neutron Spectra (PFNS)

- "Systematic Uncertainty Quantification of Prompt Fission Neutron Spectra," M.E.Rising, P.Talou, T.Kawano and A.K.Prinja, submitted to Nucl. Sci. & Eng. (LA-UR-12-21035).
- Los Alamos model for PFNS, extended with anisotropy parameter
 D.G. Madland and J.R. Nix, *Nucl. Sci. Eng.*, 81, 213 (1982).
- Input prior model parameters
 A. Tudora, Ann. Nucl. Energy, 36, 72 (2009).
- Experimental database from EXFOR / IAEA CRP
 + UQ following Standards Evaluation Methodology (GMA)
- Bayesian Kalman filter

Systematic Uncertainty Quantification

of Prompt Fission Neutron Spectra

M.E.Rising*,[†], P.Talou*, T.Kawano* and A.K.Prinja[†]

*T-2, Nuclear and Particle Physics, Astrophysics and Cosmology

Theoretical Division, Los Alamos National Laboratory, USA

Chemical and Nuclear Engineering Department, University of New Mexico, USA

UNCLASSIFIED

Slide 3

Operated by Los Alamos National Security, LLC for NNSA

Los Alamos Model (LAM) with Anisotropy Parameter

Outgoing Neutron Energy (MeV)

$$N(E) = \frac{1}{2\sqrt{E_f}T_m^2} \frac{1}{1+b/3} \int_{(\sqrt{E}-\sqrt{E_f})^2}^{(\sqrt{E}+\sqrt{E_f})^2} d\epsilon \sigma_c(\epsilon) \sqrt{\epsilon} \left(1 + \frac{b(E-\epsilon-E_f)^2}{4\epsilon E_f}\right) \int_0^{T_m} dT k(T) T \exp(-\epsilon/T)$$

UNCLASSIFIED

Slide 4

Operated by Los Alamos National Security, LLC for NNSA

LAM parameters

- Study a suite of isotopes
- Advantages:
 - Cross-isotope correlations!
 - Consistent evaluation procedure
 - Reasonable evaluations and UQ where no data exist

• Limitations:

- Incident energy dependence not yet considered
- Experimental database is limited with discrepant data
- Prior parameters: A.Tudora, Ann. Nucl. Energy, 36, 72 (2009).

Operated by Los Alamos National Security, LLC for NNSA

$$\langle \text{TKE} \rangle_{th} = \alpha_1 + \alpha_2 \frac{Z^2}{A^{1/3}} , \\ \langle E_r \rangle_{th} = \alpha_3 + \alpha_4 x + \alpha_5 x^2 , \\ \langle a \rangle = A/\alpha_6 , \\ b = \alpha_7 .$$

Slide 5

Evaluation Methodology: Experimental Data

- Differential data in EXFOR database
- Use GMA code methodology to calculate experimental covariance
 W.P. Poenitz and S.E. Aumeier, ANL/NDM-139 (1997).
- IAEA CRP on Prompt Fission Neutron Spectra for Actinides (R. Capote)
 - Some modifications to experimental datasets
 - Computed experimental covariance matrices

Uranium PFNS Differential Measurements									
Mass $\#$	First	Date	E_{inc}	E_{out}	EXFOR				
(A)	Author		(MeV)	(MeV)	Entry				
233	Miura	2002	0.55	0.7-12.1	22688-002				
233	Lajtai	1985	thermal	0.03- 3.855	30704-002				
233	Starostov	1985	thermal	0.83 - 9.3	40930-004				
233	Boytsov	1983	thermal	0.025 - 4.6	40873-002				
235	Kornilov	2010	thermal	0.68-11.8	31692-002				
235	Vorobyev	2010	thermal	0.21 - 10.8	41516-017				

UNCLASSIFIED

Slide 6

Operated by Los Alamos National Security, LLC for NNSA

Evaluation Methodology: Kalman Filter

- Assumes a normal distribution shape for posterior PDF
- For linear Kalman filter, LAM is taken to be a linear, first-order approximation

$$f(\vec{x}) \cong f(\vec{x}_0) + \mathbf{C}(\vec{x} - \vec{x}_0)$$

- Combining experimental data and theoretical model
 - Posterior parameters:

$$\vec{x}_{1} = \vec{x}_{0} + \mathbf{PC}^{T}\mathbf{V}^{-1}(\phi - f(\vec{x}_{0})) \qquad \qquad \mathbf{PFNS}$$

$$= \vec{x}_{0} + \mathbf{XC}^{T}\left(\mathbf{C}\mathbf{XC}^{T} + \mathbf{V}\right)^{-1}(\phi - f(\vec{x}_{0})) \qquad \qquad \Phi = f(\vec{x}_{1}),$$
• Posterior parameter covariance matrix:

$$\mathbf{P} = (\mathbf{X}^{-1} + \mathbf{C}^{T}\mathbf{V}^{-1}\mathbf{C})^{-1} \qquad \qquad \qquad \mathbf{F} = \mathbf{CPC}^{T}$$

$$= \mathbf{X} - \mathbf{XC}^{T}\left(\mathbf{C}\mathbf{XC}^{T} + \mathbf{V}\right)^{-1}\mathbf{C}\mathbf{X}$$
MALLABORATORY

Operated by Los Alamos National Security, LLC for NNSA

EST.1943

CSEWG Covariance Session, Nov. 7-10, 2012

Slide 7

Numerical Results: ²²⁹⁻²³⁸U

Parameter prior, posterior and uncertainties

Parameter	Prior	Prior	Posterior	Posterior
	Value	Uncertainty $(\%)$	Value	Uncertainty $(\%)$
α_1	171.412	2.0	168.567	0.52
$lpha_2$	0.273	100.0	0.228	78.29
$lpha_3$	187.850	6.0	185.125	0.37
$lpha_4$	784.342	50.0	442.208	63.56
$lpha_5$	25586.4	25.0	20783.4	30.04
$lpha_6$	11.000	4.0	10.094	3.78
$lpha_7$	0.100	50.0	0.098	16.04

Parameter posterior correlations

Parameter	α_1	α_2	α_3	$lpha_4$	α_5	$lpha_6$	α_7
α_1	100						
$lpha_2$	-1	100					
$lpha_3$	36	0	100				
$lpha_4$	-3	97	0	100			
$lpha_5$	-3	-4	0	-2	100		
$lpha_6$	61	-1	-50	-2	-3	100	
α_7	25	0	7	-2	-1	11	100
UNCLASSIFIED							

Operated by Los Alamos National Security, LLC for NNSA

NATIONAL LABORATORY

EST.1943

Slide 8

Operated by Los Alamos National Security, LLC for NNSA

CSEWG Covariance Session, Nov. 7-10, 2012

NNS®

Numerical Results: Cross-Isotope PFNS Correlations

■ Big Ten assembly contains: ²³⁴U, ²³⁵U, ²³⁶U, and ²³⁸U

Operated by Los Alamos National Security, LLC for NNSA

Numerical Results: Cross-Isotope PFNS Correlations

• Big Ten assembly:

- Contains 10 metric tons of uranium metal
- Average of 10% 235 U enrichment \rightarrow Intermediate enriched uranium
- Fast critical assembly
- MCNP5-1.60 two-zone homogenized cylindrical core model (IEU-MET-FAST-007)

Integral Quantities:

- Multiplication factor: k_{eff}
- Spectral Indices: $I^{(238f)}$, $I^{(237f)}$, and $I^{(239f)}$

• Comparison of U.S. nuclear data libraries

	Integral	Data I	Library	Present	Experimental		
	Parameter	ENDF/B-VII.0	ENDF/B-VII.1	Work	$Benchmark^*$		
	k_{eff}	0.99496(7)	0.99460(7)	0.99243(7)	0.9948(13)		
	$\mathcal{I}^{(238f)}$	0.0353(6) $0.0358(7)$		0.0353(6)	0.03739(34)		
	$\mathcal{I}^{(237f)}$	0.312(2)	0.313(3)	0.311(2)	0.3223(30)		
^	$\mathcal{I}^{(239f)}$	1.163(5)	1.162(5)	1.163(5)	1.1936(84)		
<u> </u>	*Taken From ICSBEP Handbook						
LOS Alamos NATIONAL LABORATORY EST.1943	UNCLASSIFIED						
Operated by Los Alamos Na	ational Security, LLC for I	NNSA					

CSEWG Covariance Session, Nov. 7-10, 2012

lide 11

Numerical Results: Cross-Isotope PFNS Correlations

			Uncertainty (%)						
	Integral	Monte Carlo	Uncorrelated					Correlated	
	Parameter	Statistics (%)	$^{234}\mathrm{U}$	$^{235}\mathrm{U}$	$^{236}\mathrm{U}$	$^{238}{ m U}$	Total	Total	
	k_{eff}	0.010	0.010	1.437	0.009	0.430	1.500	1.818	
	$\mathcal{I}^{(238f)}$	2.000	1.557	6.707	1.525	2.359	7.436	8.303	
	$\mathcal{I}^{(237f)}$	0.300	0.543	1.644	0.546	0.703	1.947	1.974	
5	$\mathcal{I}^{(239f)}$	0.400	0.086	0.160	0.075	0.085	0.214	0.190	
Y		Slide 12							

Operated by Los Alamos National Security, LLC for NNSA

Conclusions

- New evaluations of the PFNS and uncertainties for all uranium and plutonium actinides below second-chance fission
 - Submitted to NSE journal in May 2012
- Modified ENDF/B-VII.1 data files including the new evaluations and covariance matrices available for testing
- Correlations between major and minor actinides exist through model parameters
 - Impact on integral quantities seen in Big Ten assembly
 - More work on uncertainty propagation in preparation for ND 2013 (poster)

UNCLASSIFIED

Slide 13

Operated by Los Alamos National Security, LLC for NNSA

Questions?

This work was funded by a grant from:

U.S. Department of Energy

UNCLASSIFIED

Slide 14

Operated by Los Alamos National Security, LLC for NNSA

Additional Slides: Sampling Considerations

Systematic evaluation of PFNS

- New evaluation of uranium and plutonium
- Cross-isotope correlations
- Model parameter correlations (7x7 covariance matrix) vs. PFNS correlations

Abstract

This presentation consists of some recent work done on uncertainty quantification and propagation through fast critical assemblies of the prompt fission neutron spectra (PFNS) for many actinides. Specifically, we obtain cross-isotope correlations in the uranium and plutonium actinides and we study the impact of these correlations on the Big Ten fast critical assembly.

UNCLASSIFIED

Slide 16

Operated by Los Alamos National Security, LLC for NNSA

