Experimental nuclear data program at LLNL

Ching-Yen Wu Lawrence Livermore National Laboratory

S&T Principal Directorate – Physical Life Science / Physics Division This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

CSEWG at BNL, Nov 16, 2011

LLNL-PRES-513456

Outline

- Direct measurements for the neutron-induced reactions on actinides
- Surrogate cross section measurements
- β-delayed neutron emission measurements for fission fragments
- Summary

Direct measurements for the neutron-induced reactions on actinides

Physical Contract Physical Sciences

- Measurement of the prompt neutron and gamma emission in neutron-induced fission using the $\chi \nu$ array
- Neutron capture and the fission prompt gamma measurement using the DANCE array

Prompt γ emission in fission – Experiments

- The prompt γ emission in fission was measured using an array consisting of ~ 20 large volume scintillators in coincidence with the detection of fission fragments
- The latter was accomplished using a parallel-plate avalanche counter

S&T Principal Directorate – Physical Life Science / Physics Division

Prompt γ emission in fission – Results for the SF in ²⁵²Cf

The measured γ energy spectra were unfolded using both Bayesian and SVD methods according to the detector response, simulated numerically using a model validated by the γ-ray calibration sources, ²²Na, ⁶⁰Co, and ⁸⁸Y.

Neutron capture cross section measurement

- Experiments fielded using the DANCE array together with a newly designed fission counter between Sep 2010 and Oct 2011
 - ²³⁹Pu (0.937 mg), ²⁴¹Pu (0.147 mg), ²³⁵U (0.923 mg), ²³⁸Pu (0.374 mg)
- Events recognized by the total γ energy with the summed photopeak equivalent to the reaction Q value
- Cross sections derived for E_n from thermal to ~ 100 keV

7

Prompt γ energy and multiplicity in the SF of ²⁵²Cf

- Both γ energy and multiplicity distributions were unfolded using both Bayesian and SVD methods
 - The actual γ multiplicity distribution derived experimentally for the first time

Future plan

- Manuscript ready to submit to PRL, addressing the stochastic aspect of the prompt gamma emission in fission
- Prompt γ energy distribution in fission for ²³⁵U and ²³⁹Pu for E_n above 1 MeV
- Prompt γ energy and multiplicity distribution in fission for ²³⁵U, ²³⁸Pu, and ²⁴¹Pu for E_n below 100 keV
- Neutron capture cross sections for ²³⁸Pu and ²⁴¹Pu for E_n below 100 keV

Collaborators

C.Y. Wu, A. Chyzh, E. Kwan, R.A. Henderson, J.M. Gostic

R.C. Haight, H.Y. Lee, T. Taddeucci, J. O'Donnell, B. Perdue, N. Fontiades, M. Devlin, J.L. Ullmann, A. Laptev, T. A. Bredeweg, M. Jandel, A. Couture, A.C. Hayes-Sterbenz

Surrogate cross section measurements Contributed by Jason Burke burke26@LLNL.gov

Extracting the Surrogate (p,p') spin distribution: result for ¹⁵⁶Gd

N.D. Scielzo et al., Phys. Rev. C 81, 034608 (2010)

J.E. Escher and F.S. Dietrich, Phys. Rev. C 81, 024612 (2010)

²³⁸Pu(n,f) surrogate experiment

- 55 MeV alpha beam from 88" cyclotron at LBNL
 - 5 day measurement period
- 140 μg/cm² ²³⁹Pu, 416 μg/cm² ²³⁵U, 322 μg/cm² ²³⁶U
- 1 20 MeV equivalent neutron energy range

α

²³⁸Pu(n,f) surrogate results (Courtesy J.J. Ressler)

²⁴¹Am(n,f) and ²⁴²Am(n,f) cross sections – CS being determined

- ~71 hours ²⁴³Am, 28 hours ²³⁶U targets
- Refine experimental analysis
 - Gain corrections
 - Fission tagging
 - Examine particle-gamma coincidences
- Perform theoretical analysis
- Determine ^{242,241}Am(n,f) cross sections
- Publish results (September 2011)

Particle-fission TAC

Collaborators (students in red post-docs in green)

J.T. Burke, N.D. Scielzo, J.E. Escher, J.J. Ressler, I.J. Thompson, R.J. Casperson, F.S. Dietrich, R. Henderson, J. Gostic, R.D. Hoffman *Lawrence Livermore National Laboratory*

R.E. Tribble and M. McCleskey - Texas A&M University

V. Meot, O. Roig, E. Bauge, A. Blanc - Bruyeres le Chatel, France

B. Jurado, M. Aiche, G. Boutoux – *CENBG*, *Bordeaux*, *France* J. Benstead – AWE, England

L.W. Phair, M.S. Basunia, A. Hurst, P.Fallon, I.Y. Lee, and A.O. Macchiavelli - Lawrence Berkeley National Laboratory

V. Werner – Yale University

J. Tostevin, T. Ross - University of Surrey, England

J.A. Cizewski, N. Koller and A. Ratkiewicz - Rutgers University

E.B. Norman, J. Munson, P. Chodash, E. Swanberg - U.C. Berkeley

R. Austin - St. Mary's University, Canada

S. Chiba, K. Nishio, H. Koura, I. Nishinaka – JAEA, Japan

The State Universi

f New Jersey

Department of Physics and Astronomy

STARS - Collaboration past and future planned measurements

(more to be added as year develops)

FY2011 Experiments

Item	Experiment	PI	Institution
1	Y/Zr(3He,x) surr Y(n,2n)	Scielzo/Burke	LLNL
2	Y/Zr(p,p') surr Y(n,g)	Scielzo/Burke	LLNL
3	243Am(3He,x) surr 241Am(n,f) 242Am(n,f)	Ressler/Burke	LLNL
4	243Am(p,t) surr 240Am(n,f)	Ressler/Burke	LLNL
5	239Pu(d,p) surr 239Pu(n,f)	Casperson/Burke	LLNL
6	238U(3He,p) surr 239Np(n,f)	Norman/Angell	U.C. Berkeley
7	238U(p,d) surr 236U(n,g)	Beausang/Hughes	University of Richmond
8	Mo(d,p) and Ge(d,p)	Wiedeking	Ithemba
9	106,108,110Pd(p,p')	Hurst	LBNL
10	24Mg(4He,4He) astro	Munson/Norman	U.C. Berkeley
11	168Er(d,p) nuclear structure	Basunia/Firestone	LBNL

FY2012 Experiments

ltem	Experiment	PI
1	actinide cross section - TBD	Burke/Scielzo
2	nuclear structure - TBD	Burke/Scielzo
3	95Mo(d,p) surr > (n,g)	Cizewski + PD
4	174Yb(p,d) surr 172Yb(n,g)	Meot + PD
5	175Lu(p,d) surr > 173(n,g)	Roig
6	actinide cross section - TBD	Norman + PDs + GSs
7	(p,d) benchmark - TBD	Beausang + PD + GS
8	Nd nuclear structure	Beausang + PD + GS
9	Nuclear structure TBD	Volker Werner
10	G factor measurement and nuclear structure	Noemie Koller + PDs + GSs

Institution

LLNL LLNL **Rutgers University** BIII BIII U.C. Berkeley - NSSC University of Richmond University of Richmond Yale University

Rutgers University

β-delayed neutron decay measurements for fission fragments Contributed by Nicholas Scielzo

scielzo1@LLNL.gov

Delayed Neutrons play a fundamental role in many basic and applied sciences

Need better (or any) data for:

Apply precision ion trap approaches to β-delayed neutron spectroscopy

Perform delayed-neutron spectroscopy by detecting recoiling daughter ions emerging from an ion trap to reconstruct neutron momentum/energy

β (1 MeV): ~0.01 keV recoil

n (1 MeV): ~10 keV recoil

Identify neutron emission from large nuclear recoil! AVOID NEUTRON DETECTION!

Traps have favorable properties:

- nuclei suspended in vacuum \rightarrow no scattering
- activity localized (~1mm³)
- nuclei nearly at rest
- accessible decay times of 10 ms to >1000 s
- works for any isotope

Many anticipated advantages to recoil-ion detection: excellent energy resolution, reduced systematic effects, negligible backgrounds, high efficiency,...

Demonstrate technique offline by studying well-characterized ¹³⁷I decay

Demonstrate technique with smaller fission-fragment set-up (1 mCi ²⁵²Cf offline source at ANL) and simpler/smaller detector array Surround open-geometry ion trap with plastic scintillator and MCP detectors and reconstruct neutron from ion time-of-flight

Data collected with ¹³⁷I⁺ beam of 30 ions/sec

From Demonstration to CARIBU

Proof-of-principle...

Detector array Ω_{β} , Ω_{ion} each 3%

lon beam 30 ions/sec (for ¹³⁷I, near mass peak)

...at CARIBU

Increase both Ω_{β} , Ω_{ion} to 10-20% with optimized detector array (FY12)

 \rightarrow coinc. efficiency: \times 10-40

High-quality data with ion beams of 0.1-1 ion/sec

 \rightarrow reach very exotic nuclei: r-process, nuclear structure, etc.

CARIBU 1-Ci source: 4 × 10⁶ ions/sec (for ¹³⁷I at low-energy beamline) (FY13)

High statistics for precision and systematic checks

→ nuclear energy, stockpile stewardship, etc.

Future plan

- Measurements will be made for ^{144,145}Cs, ^{105,106}Nb in addition to ¹³⁷I
- Waiting for CARIBU online ...

23

Collaborators

N.D. Scielzo, R. Yee, M. Pedretti, E.B. Norman

M. Alcorta, J.A. Clark, C.M. Deibel, A.F. Levand, P. Bertone, G. Savard

S. Caldwell, M.G. Sternberg, J. Van Schelt

McGill

F. Buchinger, J.E. Crawford, S. Gulick, G. Li

R. Segel, D. Lascar

A. Chaudhuri, K.S. Sharma, G. Gwinner

Summary

- A suite of hardware has been developed for the nuclear data program at LLNL
- Relevant to Stockpile Stewardship, nuclear forensics, nuclear energy, ...
- Continue to look for research opportunities in both basic and applied nuclear physics important to national security

