(n,xα) Cross-sections with Clustering Pre-equilibrium Model

S. Kunieda^{*†}, R.C. Haight, T. Kawano^{*}, M.B. Chadwick^{*}, T. Fukahori[†] and Y. Watanabe[‡]

* Los Alamos National Laboratory
† Japan Atomic Energy Agency
‡ Kyushu University

Contents

- O Status of eval. & model (>20 MeV)
- O Modified Iwamoto-Harada model
- O New High-energy evaluations for B-VII.1 (^{50,52,53,54}Cr, ^{54,56,57}Fe and ^{58,60}Ni)

Status of ENDF (>20 MeV)

Iwamoto-Harada Model

Formation Factors

$$- \left| \left\langle \varphi_{\alpha} \chi^{(\epsilon_{\alpha})}(\mathbf{R}) | \phi_{1} \phi_{2} \phi_{3} \phi_{4} \right\rangle \right|^{2}$$

$$F_{l,m}(\epsilon_{\alpha}) \sim \int_{S} \prod_{i=1}^{3} d\xi_{i} d\mathbf{p}_{\xi_{i}}$$

Original : root-mean-square approximation **Present** : numerical integration

Exact Calculations for $F_{l,m}(\varepsilon_{\alpha})$

Spectra with Multiple Emission

Model Parameters

 $\begin{array}{ll} M^2 : \text{Average Matrix Element} & \longrightarrow & (n, xp)_{\text{exp.}} \\ \Delta R : \text{Clustering Model Parameter} & \longrightarrow & (n, x\alpha)_{\text{exp.}} \end{array}$

Calculation with $\Delta R=0.75$ fm

 ΔR is less energy-dependent

 ΔR is independent of inc. n/p (& nuc ?)

Absolute C.S. - example

Summary & Conclusion

- Iwamoto-Harada model with exact overlap-integration for alpha-particle
- Multiple emission (alpha-particle) is calculated with I-H model
- ΔR may be less dependent on nucleus (Constraint to the level density parameter)
- New evaluations with those findings for 50,52,53,54Cr, 54,56,57Fe and 58,60Ni

Backups

Status of Pre-equilibrium Model

Kalbach's works

 \odot Exciton model \rightarrow nucleons

Phenomenological (exciton) model

 \rightarrow Composite particles (d, t, ³He, α)

Overlap Integral

Original : root-mean-square approximation

$$\int_{S} \xi^{2} P_{\xi}^{2} \mathcal{I}(\mathbf{p}_{\xi}, \xi) d\xi d\Omega_{\xi} dP_{\xi} d\Omega_{P_{\xi}}$$
$$\longrightarrow \sim \int_{S} \delta(\xi - \overline{\xi}) \delta(p_{\xi} - \overline{p_{\xi}}) \mathcal{I}(\mathbf{p}_{\xi}, \xi) d\xi d\Omega_{\xi} dP_{\xi} d\Omega_{P_{\xi}}$$

Present : numerical integration

Multiple Emission

Model Parameters

Optical Potential (OMP)

N: Kunieda+ (2007) α : Avrigeanu+ (2009)

Single-particle State Density

 $\omega(p, h, E, \infty) f(p, h, E, V)$ Beták & Dobeš (1976)

V: Koning & Duijvestijn (2004)

 $g = 6a/\pi^2$

Deuteron Spectra

