Lawrence Berkeley National Laboratory Nuclear Science Division

Thermal neutron-capture cross sections of the tungsten isotopes

Aaron M. Hurst AMHurst@lbl.gov

Nuclear Data Week at Brookhaven National Laboratory Cross Section Evaluation Working Group Upton, Long Island, NY, 14th – 18th November 2011

Goal

- Total radiative thermal neutron-capture cross sections (σ_0)
- Improve nuclear structure information on the W isotopes and build upon spectrum of known W γ rays in neutron data libraries
- Improvements to the **Evaluated Gamma-ray Activation File** (EGAF) and **Evaluated Nuclear Structure Data File** (ENSDF) databases, and reformatted **Reference Input Parameter Library** (RIPL)

Method

- Thermal neutron capture on samples of separated W (≥98%) isotopes
- Use the statistical-decay code DICEBOX to model thermal-capture γ cascade and tune input parameters to experimental data from the analyzed capture- γ spectrum

- 10 MW Budapest reactor
- Guided-thermal neutron beam: thermal flux ~ 10⁶ cm⁻²s⁻¹ cold flux ~ 10⁸ cm⁻²s⁻¹
- Separated W samples ~ few
 100 mg
- PGAA (Prompt Gamma Activation Analysis) experimental station is located ~ 30 m from reactor wall
- Primary and secondary capture γ rays measured in low-background
- Compton-suppressed HPGe detector (closed-end coaxial) located 23.5 cm from target

Spectroscopy of separated W samples

- HYPERMET: γ-ray spectroscopy
- 50 keV ~ 10 MeV
- E.g. ${}^{186}W(n,\gamma){}^{187}W \Rightarrow \sim 700 \text{ peaks!}$
- Complex spectra
- ¹³³Ba, ¹⁵²Eu, ³⁵Cl [PVC], ²²⁶Ra, ¹⁴N[Urea]

CSEWG 2011: Nuclear Data Week @ BNL: 14th - 18th November 2011

Simulations of γ -ray cascades following the thermal neutron-capture process

DICEBOX Monte Carlo Code

DICEBOX generates (n,γ) level scheme simulations (nuclear realizations) based on statistical model level densities $\rho(E_i, J^{\pi}_i)$ and γ -ray transition probabilities Γ_{if} where

- a) All levels and γ -rays below E_{crit} are taken from experiment.
- b) All levels and γ -rays above E_{crit} are generated randomly from level density and PSF models
- c) Primary γ-ray cross sections are taken from experiment when known.

Typically 30,000 capture state γ-ray decay cascades are randomly generated for each nuclear realization.

50 separate realizations are usually averaged to get the statistical variation in the simulated level feedings.

- New thermal neutron capture cross sections, σ_0
- Sum of
 - Measured experimental gamma cross sections which feed the ground state (primary+feeding below E_{crit}) ($\Sigma \sigma_i^e$)
 - Modeled population feeding from continuum to ground state ($\Sigma \sigma_i^s$)

$$\sigma_0 = \Sigma \sigma_i^e + \Sigma \sigma_j^s$$

Stable tungsten occurs naturally in 5 isotopic forms:

- ¹⁸⁰W (0.12%) very little (n, γ) information, not considered in evaluation
- ¹⁸²W (26.50%)
- ¹⁸³W (14.31%)
- ¹⁸⁴W (30.64%)
- ¹⁸⁶W (28.43%)

Stable ¹⁸²⁻¹⁸⁶W all have large natural abundances, therefore, evaluation is needed for all isotopes

For all W data evaluations:

consider compound system i.e. $^{AW}(n,\gamma)^{A+1}W$ A+1W is the compound system

calculations assuming 10 nuclear realizations, with 50,000 capture-state γ -ray decay cascades generated per realization

Results: ¹⁸²**W(n,γ)**¹⁸³**W**

- Population (Simulation) depopulation (Experiment) plots
- Population ~ depopulation
- Level scheme information is accurate and complete
- Statistical model explains observed levels
- Population ≠ depopulation
- Missing or inaccurate information in the level scheme
- γ rays (and their branching ratios), levels, J^{π} assignments
- Plot shows good agreement between experiment and theory for ¹⁸³W compound
- $E_{crit} = 595.7$ keV, 16 low-lying levels

Determining the critical energy E_{crit}

• Isomers, unobserved levels, gammas, statistically-signifcant deviation of data

Determining the spin (J^{π}) composition of the neutron-capture state

CSEWG 2011: Nuclear Data Week @ BNL: 14th - 18th November 2011

Improving the nuclear structure: determining J^{π} of low-lying states

Results: ¹⁸⁶**W(n**,γ)¹⁸⁷**W**

• 3 low-lying levels

• 41 low-lying levels

Total radiative capture cross sections for the W isotopes

$$\sigma_0 = \sum \sigma_{\gamma}^{\exp}(\text{GS}) + \sum \sigma_{\gamma}^{\sin}(\text{GS})$$

Isotope (compound)	E _{crit} [keV] [# levels]	σ ₀ [b] adopted	σ ₀ [b] this work
¹⁸³ W: ¹⁸² W(n,γ)	622.2 [17]	19.9(3)	20.5(11)
¹⁸⁴ W: ¹⁸³ W(n,γ)	1360.4 [18]	10.4(2)	10.44(41)
¹⁸⁵ W: ¹⁸⁴ W(n,γ)	492.0 [14]	1.7(1)	1.15(10)
¹⁸⁷ W: ¹⁸⁶ W(n,γ)	891.9 [41]	42.1(7)*	43.2(12)

* Muhghabghab (2006): $\sigma_0 = 38.1(5)$ b

• DICEBOX: useful tool for simulating γ -ray emission following thermal neutron capture on the W isotopes

• Spectroscopy of W isotopes through thermal neutron capture on isotopically-enriched samples elucidates a better understanding of the level schemes

• Analysis of compound systems: ¹⁸³W, ¹⁸⁴W, ¹⁸⁵W, ¹⁸⁷W is largely complete with improved levels schemes (γ rays, levels, branching ratios, J^{π} assignments)

• Improved databases: EGAF and ENSDF (RIPL)

• New independent measurements of the total radiative thermal neutron-capture cross section for each of the W isotopes

- Forthcoming publication targeted at PRC
- Future: ¹⁸⁰W (~11%) recently measured at the Budapest Reactor

- **LBNL** A. M. Hurst, R. B. Firestone, S. Basunia, C. M. Baglin
- Budapest Reactor Zs. Revay, T. Belgya, L. Szentmiklósi
- LLNL B. W. Sleaford, N. C. Summers, J. E. Escher
- Charles University (Prague) M. Krticka
- Seoul National University H. Choi
- North Carolina State University D. Dashdorj
- IAEA R. Capote, A. Nichols

neutron separation energy

- Compound system formed at high energy
- Neutron separation energy
- Beneath threshold for particle evaporation
- Compound system deexcites through $\gamma\text{-ray}$ emission
- Simulate this process using the Monte Carlo code DICEBOX

Self-absorption of γ rays in W samples

- sample thickness: 0 0.2 mm
- calculation assumes <0.1 mm >

Elemental ₇₄W capture-γ spectrum

• ENSDF $\Rightarrow \gamma$ lines in individual W compound systems

Separated-W targets: definitive assignments; weaker signatures

Back-shifted Fermi gas (level density) with Von Egidy parameterization

$$\rho(E,J) = f(J) \frac{\exp(2\sqrt{a(E-E_1)})}{12\sqrt{2}\sigma_c a^{1/4}(E-E_1)^{5/4}}$$

[Till von Egidy and Dorel Bucurescu, Phys. Rev. C 72, 044311 (2005)]

Generalized Lorentzian E1 PSF with RIPL parameterization (experimental data)

$$f_{GLO}^{E1}(E_{\gamma},\Theta) = \frac{1}{3(\frac{hc}{2})^{2}} \left[\frac{E_{\gamma}\Gamma_{G}(E_{\gamma},\Theta)}{(E_{\gamma}^{2} - E_{G}^{2})^{2} + E_{\gamma}^{2}\Gamma_{G}^{2}(E_{\gamma},\Theta)} + F_{K}\frac{4\pi^{2}\Theta^{2}\Gamma_{G}}{E_{\gamma}^{5}} \right] \sigma_{G}\Gamma_{G}$$

Resonance-shape parameters: E_G (energy centriod), Γ_G (resonance width), σ_G (resonance cross section)

Scissors + spin-flip M1 PSF with parameterization from Yb isotopes [U. Agvaanluvsan et al., Phys. Rev. C 70, 054611 (2004)]

Isoscalar + Isovector E2 PSF or single particle

DICEBOX: simulation cf. experiment

- BERKELEY LAD
- DICEBOX calculates theoretical level feedings to all excited states in the input file
- Simulated populations (P_S) can then be compared to measured experimental depopulations (P_E)
- If $P_E=P_S \Rightarrow$ statistical model accurately describes nuclear properties
- Consider hypothetical nucleus ^{XXX}Aa: 4 excited states in rotational sequence; E_{crit}=800 keV
- Critical energy (Ecrit): highest level where all structure information (γ branching, J^{π}) is known
- Increasing transition probability upon descending band as consequence of decay process i.e. a larger γ -decay branch is observed from states with decreasing excitation energy

