Nuclear Data Measurements at RPI

Report to CSEWG November, 2011

Y. Danon, R. Bahran, B. Becker, E. Blain, A. Daskalakis, E. Liu, J. Thompson, D. Williams *Rensselaer Polytechnic Institute, Troy, NY, 12180*

and

D.P. Barry, R. C. Block, T.J. Donovan, B. Epping, G. Leinweber, M. Rapp KAPL, Bechtel Marine Propulsion Corporation, Schenectady, NY,12301-1072

1

Measurements Completed This Year

Scattering

- ²³⁸U, Neutron Scattering (4/7 angles), 0.5-20 MeV, 30m flight path.

Transmission

- ⁹⁵Mo, Fe-filtered transmission, 100m flight path
- ^{95,96,98,100}Mo, 10 eV 600 keV, 100m and 30m flight path
- ^{95,96,98,100}Mo, 0.5-20 MeV, 250m flight path
- ⁵⁶Fe, 0.5-20 MeV, 250m flight path

Planned Measurements

- Scattering
 - Complete ²³⁸U, Neutron Scattering, 0.5-20 MeV, 30m flight path.
- Transmission
 - Fe-filtered ⁵⁶Fe, 100m flight path
 - ^{92,94}Mo, 10 eV 600 keV, 100m and 30m flight path
 - Ti, Zr, Mo 0.5-20 MeV, 250m flight path
 - Fission neutrons spectrum for ²⁵²Cf and ²³⁵U

Data Analysis

Sample	Status		
Be, C	High energy (0.5-20MeV) transmission, submitted for publication		
Zr	High energy (0.5-20MeV) scattering, submitted for publication		
^{147,149} Sm (n,α)	Cross section measurements with the LSDS, submitted for publication		
Ti, Ta, Zr, Mo	High energy (0.5-20MeV) transmission analysis in progress		
²³⁵ U	Capture and fission in the energy range thermal to 5 keV (in progress)		
^{95,96,98,100} Mo, Rh, Eu, ¹⁵³ Eu, Cd, ²³⁶ U, ^{161,162,163,164} Dy ^{155,156,157,158,160} Gd,	Resonance parameters analysis in progress		

⁵⁶Fe Total Cross Section Measurements (NCSP) 250m Flight Path

Rensselaer

- Measured at 250m flight station with 8ns pulse width.
- Two sample thicknesses were used 0.271767 a/barn (3.22 cm) and 0.649742 a/barn (7.69 cm)
- Sample is 99.87% metallic ⁵⁶Fe
- Can help extend the resolved resonance region above 892 keV
- Only two other data sets available on EXFOR above 900 keV (Harvey et al. and Cornelis et al.)
- The JEFF 3.1 evaluation follows the Cornelis et al. data

⁵⁶Fe Total Cross Section Measurements

- New data has good energy resolution but lower then Cornelis et al.
- The Cornelis et al. data is based on an oxide sample Fe₂O₃ (need to correct for O₃)
- Above 10 MeV the data has low errors and is in good agreement with both ENDF/B-VII.0 and JEFF 3.1

Gaerttner Laboratory

High Energy Total Cross Section of Mo Isotopes 250m Time of Flight

- Data show structure below 2 MeV
- General good agreement with evaluations

^{95,96,98,100}Mo Transmission 100to 700 keV 100m Time of Flight

- Experiments with ⁶Li-Glass detector at 100m flight distance
- Detector counts
 were grouped but
 still data show
 structure
- Good agreement with ENDF//B-7.0

Mo Isotopes in the Resonance Region 100m Flight Path

9

- Resonance parameters analysis in progress
- Data provide
 information to extend
 the resolved resonance
 region of several
 isotopes

Iron Filtered beam Mo-95 total cross section

- There is general good agreement in the shape of all experimental data sets and evaluations.
- Above 10 keV Mo-95 the filtered beam, 100m, and 250m transmission experiments suggest structure in total cross section.
- Near 200 keV the data are~4% lower than the evaluations.

Configurations

- 100m Detector
 - low energy 10 keV-200 keV
 - high energy 100-600 keV
 - Iron Filtered beam 24-960 keV
- 250m detector
 - 0.5-20 MeV

^{151,153}Eu measurements - Samples

- Stable samples of volatile metals
- Natural and enriched metal samples
- Sample thickness distribution verified by X-ray imaging*

	Natural Samples	Enriched	
	[at frac.]	[at frac.]	
¹⁵¹ Eu	0.478	0.0123	
¹⁵³ Eu	0.522	0.9877	

*Jeffrey A. Geuther, Robert C. Block, Brian Methe, Devin P. Barry, Gregory Leinweber, "X-ray Determination of the Thickness of Thin Metal Foils" to be submitted to NIM A, 2011.

The Gaerttner Laboratory

Eu Thermal Total Cross Sections (barns)

- RPI thermal values obtained from the measured data itself.
- Results in significant changes to negative energy resonances

Isotope	ENDF error from atlas [b]	RPI [b]	Dean et al. Reactivity Worth [b]	Mughabghab [b]
¹⁵¹ Eu	9187±100	9700±200		
¹⁵³ Eu	321±8	360±20	382*	358*

(Uncertainties provided at the one sigma level)

* Said Mughabghab, "Analysis of Measurements in the Unresolved Resonance Region for ENDF Evaluations", PI Nuclear Data (RND) 2011 Symposium for Criticality Safety and Reactor Applications.

Rh Transmission and Capture Measurements

- Data analysis from thermal to 500 eV
- Generally the data agree well with ENDF/B-7.0
- Thermal data analysis in progress

Rh Resonance Analysis

• Showing improvements to ENDF/B 7.0 parameters

²³⁶U Resonance At 5.45 eV

- Fitted several thicknesses of U₃O₈ samples, 89% ²³⁶U, thinnest two shown
- RPI data have higher transmission
- Peak cross section for RPI is about 30% less than ENDF-7.0
- Could be explained by possible voids in the sample
- Use of liquid samples in new measurements is being evaluated.

Energy [eV]

²³⁵U Measurement Supports Lower ²³⁶U Cross Section @ 5.45 eV

- 40 mil thick Sample
- 93.399± 0.016%
 enriched in ²³⁵U
- 0.1264±0.0012% ²³⁶U

Both Barry and Leinweber measurements indicate ~ 33% reduction in Γ_n

Analysis of Capture Measurements of Gd and Dy Isotopes (NSCP/RPI)

- Resonance parameter analysis of ^{155, 156, 157, 158, 160}Gd nearly complete.
 - ^{155,157}Gd resonance region was extended to 1000 eV
 - Used transmission data from previous RPI measurements to test data below 300 keV
- Resonance parameter analysis of ^{161,162,163,164}Dy data started
 - Plan to include older RPI measurements in the analysis

Dy - 164

Demonstrates good collaboration with Korean universities

Dy - 163

Gd enriched samples

Dy enriched samples

Dy -162

Dy - 161

Dy - Nat - 20mil

SAMMY fits to ^{155,156,157,158,160}Gd Capture Yield

SAMMY fits to ^{161,162,163,164}Dy Capture Yield

²³⁵U Capture & Fission Yield Data - Epithermal Measurement

Comparing ²³⁵U Fission and Capture with Evaluations

- Fission is in excellent agreement with evaluations
- Capture data has up to 8% multiple scattering that must be taken into account during the analysis
- Capture error is about 8%
- 0.4-1 keV capture data is closer to ENDF/B-7.0
- 1-2 keV ENDF/B7.0 too high JENDL 4.0 too low.
- E>1 keV data is slightly higher than evaluations but within errors.

Scattering Detection System: Experimental Setup

- Detector Array
 - 8 EJ301 Liquid Scintillation Detectors
 - 8 A/D channels
 - Pulse Shape discrimination in TOF
- Measures neutrons scattered from the sample at different angles
- Measured scattered neutron energy 0.5 MeV - 20 MeV
- **Results are compared with a Monte Carlo simulation of the system**

²³⁸U Scattering at 27 Degrees

Measured in September 2011.

Gaerttner Laboratory

²³⁸U Scattering at 156 Degrees

Nu-bar and Fission Spectrum Measurements (SSAA)

- A system is developed for the simultaneous measurement of nu-bar and fission spectrum.
- This system utilizes a coincidence requirement on an array of gamma detectors to tag fission events.
- This allows for much larger samples to be used than with conventional fission chambers

Sample

 $L_1 = 25 \text{ m}$

Experimental Setup

Neutron Detectors

m

(top view)

Gaerttner Laboratory

Thermal Scattering Experiment at SEQUOIA (SNS)

- SEQUOIA:
 - Fine-Resolution Fermi Chopper Spectrometer at SNS
 - $E_i = 10 \text{ to } 2000 \text{ meV}$
 - 900 ³He detector tubes
 - Scattering angles: -30° to -3° horizontal and 3° to 60° vertical
 - Flux: > 1×10^5 neutrons/cm²/s
 - Resolution: $\Delta E/E_i \sim 1\%$

• Double differential scattering cross section for inelastic scattering:

$$\frac{d^{2}\sigma}{d\Omega dE'}(E \to E', \Omega \to \Omega') = \frac{\sigma_{b}}{4\pi kT} \sqrt{\frac{E'}{E}} e^{-\frac{\beta}{2}} S(\alpha, \beta)$$

$$\alpha = \frac{E' + E - 2\sqrt{E'E\cos\theta}}{AkT} = \frac{\hbar^{2}\kappa^{2}}{2MkT} \qquad \beta = \frac{E' - E}{kT} = \frac{\varepsilon}{kT}$$
Renselation (12)

Summary – FY2011 and planned 2012 activity

- Data publications (published and in preparation)
 - High energy total cross section for C and Be
 - High energy scattering from Zr
 - 147,149 Sm (n, α) cross section measurements with the LSDS
 - Eu sample x-ray characterization
 - Michael Rapp PhD thesis "Design and construction of a large area detector system and neutron total cross section measurements in the energy range 0.4 to 20 Mev", included transmission results on C, Be, Mo, Zr, Ta, Ti
- Analysis in progress
 - Ti, Ta, Zr and Mo high energy (0.5-20 MeV) transmission
 - Rh, Cd, Eu,¹⁵³Eu,^{161,162,163,164}Dy,^{155,156,157,158,160}Gd,²³⁶U– Resonance parameter analysis
 - ^{95,96,98,100}Mo resonance region (10 eV 600 keV) transmission measurements
 - ²³⁸U neutron scattering
- Planned measurements
 - Fe-filtered ⁵⁶Fe, 100m flight path
 - ^{92,94}Mo, 10 eV 600 keV, 100m and 30m flight path
 - Ti, Zr, Mo 0.5-20 MeV, 250m flight path
 - Fission neutron spectra and nubar from ²⁵²Cf and ²³⁵U
 - ⁵⁰V(n, α) cross section measurements with a LSDS

