Extending the Kawai-Kerman-McVoy Statistical Theory of Nuclear Reactions to Doorway States

Nuclear Data Week, BNL

November 14-18, 2011

Goran Arbanas (ORNL)
Kenny Roche (PNNL)
Arthur Kerman (MIT/UT)
Carlos Bertulani (TAMU)
David Dean (ORNL)
击 Oak Ridge National Laboratory

- UNEDF SciDAC:

- www.unedf.org

HPC numerical simulation of formal theories of statistical nuclear reactions

Energy structures in cross sections

Fig. 6. Photocapture of protons by Al^{27} to the ground state of Si^{28}. The data is presented for various stages of resolution. From ref. 26.

Why KKM?

- A framework based on Feshbach's projection operators
- Central result:
$-T=T_{\text {background }}+T_{\text {resonant }}=T_{\text {average }}+T_{\text {fluctuating }}$
- A foundation for derived statistical theories:
- Kerman-McVoy
- Designed for two step processes like $\mathrm{A}(\mathrm{d}, \mathrm{p}) \mathrm{B}^{*}, \mathrm{~B}^{\star} \rightarrow \mathrm{A}+\mathrm{n}$
- Could be used for statistical (d, p) reactions at FRIB
- Accounts for doorway states (IAR)
- Feshbach-Kerman-Koonin (FKK)
- Multistep reactions (doorway, hallway, etc.), used for nuclear data analysis
- Expressions similar to KKM were derived by other methods
- Random Matrix Theory
- Maximum Entropy Method

Kawai-Kerman-McVoy:

continuum bound

Feshbach's projection operators

$$
\begin{gathered}
H \Psi=E \Psi \\
P+Q=1 ; \quad P \cdot Q=0 \quad P^{2}=P \quad H_{P Q} \equiv P H Q \\
\begin{array}{c}
\left(E-H_{P P}\right) P \Psi=H_{P Q} \Psi \\
\left(E-H_{Q Q}\right) Q \Psi=H_{Q P} \Psi \\
\left(E-H_{P P}\right) \chi=0
\end{array}
\end{gathered}
$$

Two-potential formula yields

$$
\begin{aligned}
\Rightarrow T & =\langle\phi| V_{P P}|\chi\rangle+\langle\chi| H_{P Q} \frac{1}{E-H_{Q Q}-H_{Q P} \frac{1}{E-H_{P P}} H_{P Q}} H_{Q P}|\chi\rangle \\
& \equiv T_{\text {background }}+T_{\text {resonant }}
\end{aligned}
$$

KKM Fluctuation T-matrix

$$
\begin{aligned}
& \left(E-H_{\mathrm{opt}}\right) P \Psi=V_{P Q} \Psi \\
& \left(E-H_{Q Q}\right) Q \Psi=V_{Q P} \Psi \\
& \left(E-H_{\mathrm{opt}}\right) \overline{P \Psi}=0
\end{aligned}
$$

$$
V_{P Q}=H_{P Q} \sqrt{\frac{i I}{E-H_{Q Q}+i I}}
$$

Two-potential formula yields

$$
\begin{aligned}
\Rightarrow & T=\langle\phi| H_{\text {opt }}|\bar{\Psi}\rangle+\langle\bar{\Psi}| V_{P Q} \frac{1}{E-H_{Q Q}-V_{Q P} \frac{1}{E-H_{\text {opt }}} V_{P Q}} V_{Q P}|\bar{\Psi}\rangle \\
& \equiv T_{\text {optical }}+T_{\text {fluctuation }} \\
\Rightarrow & \left\langle T_{\text {fluctuation }}\right\rangle \approx 0 \quad \text { is the central result of the KKM } \\
\Rightarrow & \langle\sigma\rangle \approx \sigma_{\text {optical }}+\left\langle\sigma_{\text {fluctuation }}\right\rangle
\end{aligned}
$$

Expand the T-matrix by eigenfunctions

$$
\begin{gathered}
T_{c c^{\prime}}^{\text {fluct }}(E) \equiv \frac{1}{2 \pi} \sum_{q} \frac{g_{c q}(E) g_{c^{\prime} q}(E)}{E-\mathcal{E}_{q}(E)} \\
g_{c q}(E)=\sum_{Q}\left\langle\psi_{c}(E)\right| V_{c Q}(E)|Q\rangle\langle Q \mid q(E)\rangle \quad \begin{array}{l}
\text { This E-dependence now } \\
\text { treated explicitly. }
\end{array} \\
\left\langle T_{c c^{\prime}}^{\text {fluct }}(E)\right\rangle_{I} \equiv \frac{I}{2 \pi} \int \frac{d E^{\prime}}{\left(E-E^{\prime}\right)^{2}+\frac{I^{2}}{4}} T_{c c^{\prime}}^{\text {fluct }}\left(E^{\prime}\right) \approx 0 \text { ? }
\end{gathered}
$$

Results:

Eigenvalues/vectors	Average Ratio	SQRT(Variance)
E-independent	0.0037	0.0053
E-dependent	0.0042	0.0049

Computation parameters:

Test approximations in KKM derivation

- The E-dependence makes E-averaging more accurate

$$
\begin{aligned}
& T_{c c^{\prime}}=\bar{T}_{c c^{\prime}}+\frac{1}{2 \pi} \sum_{q} \frac{g_{q c}(E) g_{q c^{\prime}}(E)}{E-\mathcal{E}_{q}(E)}=\bar{T}_{c c^{\prime}}+T_{c c^{\prime}}^{\mathrm{fluct}} \\
& \left.\left.\Rightarrow\left\langle\sigma_{c c^{\prime}}^{\text {fluct }}\right\rangle \sim\langle | T_{c c^{\prime}}^{\text {fluct }}\right|^{2}\right\rangle_{I} \\
& \cong\left\langle\sum_{q} \frac{g_{q c} g_{q c^{\prime}}}{E-\mathcal{E}_{q}} \frac{g_{q c}^{*} g_{q c^{\prime}}^{*}}{E-\mathcal{E}_{q}^{*}}\right\rangle_{I} \\
& \cong 2 \pi\left\langle\frac{g_{q c} g_{q c^{\prime}} g_{q c}^{*} g_{q c^{\prime}}^{*}}{D_{q} \Gamma_{q}}\right\rangle_{q} \\
& \cong \frac{2 \pi}{D_{q} \Gamma_{q}}\left\langle g_{q c} g_{q c^{\prime}} g_{q c}^{*} g_{q c^{\prime}}^{*}\right\rangle_{q} \\
& \cong X_{c c} X_{c^{\prime} c^{\prime}}+X_{c c^{\prime}} X_{c^{\prime} c} \quad \text { where } \quad X_{c c^{\prime}} \equiv\left(\frac{2 \pi}{D \Gamma}\right)^{1 / 2}\left\langle g_{q c} g_{q c^{\prime}}^{*}\right\rangle_{q}
\end{aligned}
$$

KKM Cross Section (Transmission Coeff.)

- From the Fluctuating T-matrix, KKM derived an energy averaged cross section in terms of optical potential transmission coefficients = modified Hauser-Feshbach
- Energy averaging interval =I, s.p. state width, 0.5 MeV
- "gross" structure

$$
\begin{aligned}
& \left\langle\sigma_{c c^{\prime}}^{\mathrm{fl}}\right\rangle_{I} \sim X_{c c} X_{c^{\prime} c^{\prime}}+X_{c c^{\prime}} X_{c^{\prime} c} \quad X_{c c^{\prime}}=\left\langle g_{c q} g_{c^{\prime} q}^{*}\right\rangle_{I} \\
& \left\langle\sigma_{c c^{\prime}}^{\mathrm{fl}}\right\rangle_{I} \sim \frac{1}{\sum P_{c{ }^{\prime}}}\left\{P_{c c} P_{c^{\prime} c^{\prime}}+P_{c c^{\prime}} P_{c c^{\prime}}+\ldots\right\} \\
& P_{c c^{\prime}}=\left(1-\bar{S}^{*}\right)_{c c^{\prime}}=X_{c c^{\prime}} \operatorname{Tr}(X)+\left(X^{2}\right)_{c c^{\prime}}
\end{aligned}
$$

Doorway states in the KKM theory

P $\quad P H Q$
Q

continuum

KKM extended to intermediate structure

$$
I_{\mathrm{int}}<\Gamma_{d}
$$

Feshbach, Kerman, and Lemmer Ann. of Phys. 41, 230 (1967)

$$
\begin{array}{lll}
T=T^{P}+T^{d}+T^{q}(E) & \Leftrightarrow & T=T^{P}+T^{Q}(E) \\
T=T^{\text {int }}+T_{q}^{\text {fluct }}(E) & \stackrel{?}{\Leftrightarrow} & T=T^{\mathrm{opt}}+T_{Q}^{\text {fluct }}(E)
\end{array}
$$

$$
T_{q}^{\text {flut }}(E)=H_{P d} \frac{1}{E-H_{d d}-W_{d d}} H_{d q} \frac{1}{E-H_{q q}-H_{q d} \frac{1}{E-H_{d d}-W_{d d}} H_{d q}} H_{q d} \frac{1}{E-H_{d d}-W_{d d}} H_{d P}
$$

$$
T_{q}^{\text {fluct }}(E)=\frac{1}{2 \pi} \sum_{q} \frac{\gamma_{c q}(E) \gamma_{c^{\prime} q}(E)}{E-E_{q}(E)}, \quad \gamma_{c q}(E)=\sum_{d} \frac{g_{c d}(E) g_{d q}(E)}{E-\mathrm{E}_{d}(E)}
$$

KKM extended to intermediate structure

$$
\begin{aligned}
& T=\langle T\rangle_{I_{\mathrm{int}}}+T_{q}^{\text {fluct }}(E) \\
& Q \\
& \langle T\rangle_{I_{\text {int }}} \approx T^{\text {int }} \\
& \text { - Energy average over } I_{\text {int }}<\Gamma_{d} \\
& \text { - "intermediate" structure } \\
& \text { - Finer than "gross", but } \\
& \text { coarser than "fine" structure } \\
& H^{\mathrm{int}}=H_{P P}+H_{P d} \frac{1}{E-H_{d d}-H_{d q} \frac{1}{E-H_{q q}+i I_{\text {int }}} H_{q d}} H_{d P} \\
& T=T^{\text {int }}+T_{q}^{\text {fluct }}(E) \quad \text { is analogous to } \quad T=T^{\mathrm{opt}}+T_{Q}^{\text {fluct }}(E) \\
& \left\langle T_{q}^{\text {fluct }}(E)\right\rangle_{I_{\mathrm{int}}} \stackrel{?}{\approx} 0
\end{aligned}
$$

KKM extended to intermediate structure

$$
T=\langle T\rangle_{I_{\mathrm{int}}}+T_{q}^{\mathrm{fluct}}(E)
$$

- Energy average over
- "intermediate" structure
- Finer than "gross", but

$$
\begin{aligned}
& I_{\text {int }}<\Gamma_{d} \\
& Q \\
& \langle T\rangle_{I_{\mathrm{int}}}=T^{P}+T^{d}+\left\langle T^{q}(E)\right\rangle_{I_{\mathrm{int}}} \\
& T_{q}^{\text {fluct }}(E)=T-\langle T\rangle_{I_{\mathrm{int}}} \\
& =T^{q}(E)-\left\langle T^{q}(E)\right\rangle_{I_{\mathrm{int}}} \\
& T_{q}^{\text {fluct }}(E)=\frac{1}{2 \pi} \sum_{q} \frac{\bar{\gamma}_{c q}(E) \bar{\gamma}_{c^{\prime} q}(E)}{E-E_{q}(E)} \\
& \bar{\gamma}_{c q}(E)=\gamma_{c q}(E) \sqrt{\frac{i I_{\mathrm{int}}}{E-E_{q}(E)+i I_{\mathrm{int}}}} \\
& \frac{1}{E-E_{q}(E)}-\frac{1}{E-E_{q}(E)+i i_{\text {int }}}=\frac{i I_{\text {in }}}{\left(E-E_{q}(E)\left(E-E_{q}(E)+i I_{\text {int }}\right)\right.} \\
& T=T^{P}+T^{d}+T^{q}(E)
\end{aligned}
$$

Preliminary results for doorways

```
nq =: 440, 840 NB. # of compound levels
nd =: 60
strengthpd =: 0.05 0.005
strengthdq =: 0.01 0.001
nc =: 20
ne =: 10
radius =: 5.
nr =: 5
Elow =: 1.0
Ehigh =: 2.0
ii =: 0.05
Echan_high =: 1.0
    NB. # of doorway states
    NB. average coupling strength H_PD
    NB. average coupling strength H_DQ
    NB. # of channels
    NB. # of energy grid points
    NB. radius of interaction
    NB. # of radial points in h(p,q,r)
    NB. low end of the energy range
    NB. high end of the energy range
    NB. energy averaging interval
    NB. nc equidistant channel
thresholds from 0 to Echan_high
```

nq	Avg(T_kkm)/Avg(T)	
	Non-overlapping res.'s	Overlapping res.'s
440	0.15	0.15
840	0.16	0.12

HPC progress report (by K. Roche)

- implemented novel parallel complex symmetric diagonalization routine in the spirit of ScaLAPACK
-requires more extensive testing at scale
- tested against zgeev()
- self-consistent tests (|AZ-DZ|) ($n=65536$)
- against Toeplitz form ($n=32768$)
- implementation of triangular solves are one bottleneck that can be improved
- remove the kfil() data structures -stay incore
- plug in the parallel, parallel diagonalization routines over energies -code exists but we have not tested it
- E ~EI, E2, ..., En
- instead of doing these in sequence, do them at once
- form at most n subcommunicators of size $P^{*} Q ;(n p \sim n * P * Q)$
(P, Q are dimensions of virtual rectangular process grid)
- perfect strong scaling over diagonalization phase in simple tests

Conclusions

- The effect of neglecting the E-dependence of eigenvalues and eigenvectors in the KKM is relatively small
- KKM derivation generalized to intermediate structure
- Provides formal justification for faster E-dep. of optical potentials
- May be generalized to finer structure:
- Provided: there are many compound resonances in the E-averaging interval
- The subtraction method could be used to simply derive the KKM

Outlook

- Complete parallel KKM with E-dep. eigenvalues/vectors
- Further testing of approximations in derivation of KKM cross sections is underway

Expand T-matrix in eigenvalues/vectors:

$$
T=T^{(0)}+\langle\chi| H_{P Q} \frac{1}{E-H_{Q Q}-H_{Q P} G_{P} H_{P Q}} H_{Q P}|\chi\rangle
$$

$$
\begin{aligned}
{\left[H_{Q Q}+H_{Q P} G_{P} H_{P Q}\right]|\hat{q}\rangle } & =\hat{\mathcal{E}}_{q}|\hat{q}\rangle \\
\langle\widetilde{\hat{q}}|\left[H_{Q Q}+H_{Q P} G_{P} H_{P Q}\right] & =\langle\widetilde{\hat{q}}| \hat{\mathcal{E}}_{q}
\end{aligned}
$$

$$
\begin{array}{ll}
\hat{\mathcal{E}}_{q}=\hat{E}_{q}-i \frac{\hat{\Gamma}_{q}}{2} & H_{Q Q}\left|Q_{j}\right\rangle=E_{Q_{j}}\left|Q_{j}\right\rangle \\
\sum_{\hat{q}}|\hat{q}\rangle\langle\hat{\hat{q}}|=1 & \sum_{j}\left|Q_{j}\right\rangle\left\langle Q_{j}\right|=1 \\
\left\langle\widetilde{\hat{q}} \mid \hat{q}^{\prime}\right\rangle=\delta_{\hat{q} \hat{q}^{\prime}} & \left\langle Q_{j} \mid Q_{j}\right\rangle=\delta_{i j}
\end{array}
$$

$T_{c c^{\prime}}=T_{c c^{\prime}}^{(0)}+\sum_{\hat{q}}\left\langle\chi_{c}\right| H_{P Q}|\hat{q}\rangle \frac{1}{E-\hat{\mathcal{E}}_{q}}\langle\hat{\hat{q}}| H_{Q P}\left|\chi_{c^{\prime}}\right\rangle$
$T_{c c^{\prime}}=T_{c c^{\prime}}^{(0)}+\frac{1}{2 \pi} \sum_{\hat{q}} \frac{\hat{\boldsymbol{g}}_{c q} \hat{g}_{c^{\prime} q}}{E-\hat{\mathcal{E}}_{q}}$
Matrix size limited by the eigensolver:
1 CPU < 10^{4},
in parallel $<10^{6}$

KKM subtraction

$$
\begin{align*}
& \left(E-H_{P P}\right) P \Psi=H_{P Q} \Psi \tag{1}\\
& \left(E-H_{Q Q}\right) Q \Psi=H_{Q P} \Psi \tag{2}\\
& Q \Psi=\frac{1}{E-H_{Q Q}} H_{Q P} \Psi
\end{align*}
$$

$$
\left(E-H_{P P}\right) P \Psi=H_{P Q} \frac{1}{E-H_{Q Q}} H_{Q P} P \Psi
$$

Use $H_{\text {opt }}$ to rewrite Eq. (3)
(3)

Energy averaging of

$$
\left(E-H_{\mathrm{opt}}\right) \overline{P \Psi}=0
$$ the T-matrix yields this expression for optical

$$
H_{\mathrm{opt}} \equiv H_{P P}+H_{P Q} \frac{1}{E-H_{Q Q}+i I} H_{Q P}
$$ potential and opt.w.f. (for Lorentzian averaging)

$$
\left(E-H_{\mathrm{opt}}\right) P \Psi=H_{P Q}\left(\frac{1}{E-H_{Q Q}}-\frac{1}{E-H_{Q Q}+i I}\right) H_{Q P} P \Psi
$$

$$
=H_{P Q} \sqrt{\frac{i I}{E-H_{Q Q}+i I}} \frac{1}{E-H_{Q Q}} \sqrt{\frac{i I}{E-H_{Q Q}+i I}} H_{Q P} P \Psi
$$

$$
\equiv V_{P Q} \frac{1}{E-H_{Q Q}} V_{Q P} P \Psi
$$

$$
V_{P Q}=H_{P Q} \sqrt{\frac{i I}{E-H_{Q Q}+i I}}
$$

KKM extended to intermediate structure

$$
I_{\mathrm{int}}<\Gamma_{d}
$$

Feshbach, Kerman, and Lemmer Ann. of Phys. 41, 230 (1967)

$$
\begin{array}{lll}
T=T^{P}+T^{d}+T^{q}(E) & \Leftrightarrow & T=T^{P}+T^{Q}(E) \\
T=T^{\text {int }}+T_{q}^{\text {fluct }}(E) & \stackrel{?}{\Leftrightarrow} & T=T^{\mathrm{opt}}+T_{Q}^{\text {fluct }}(E)
\end{array}
$$

$$
T_{q}^{\text {fuct }}(E)=H_{P d} \frac{1}{E-H_{d d}-W_{d d}} H_{d q} \frac{1}{E-H_{q q}-H_{q d} \frac{1}{E-H_{d d}-W_{d d}} H_{d q}} H_{q d} \frac{1}{E-H_{d d}-W_{d d}} H_{d P}
$$

$$
T_{q}^{\text {fluct }}(E)=\frac{1}{2 \pi} \sum_{q} \frac{\gamma_{c q}(E) \gamma_{c^{\prime} q}(E)}{E-E_{q}(E)}, \quad \gamma_{c q}(E)=\sum_{d} \frac{g_{c d}(E) g_{d q}(E)}{E-\mathrm{E}_{d}(E)}
$$

