Zirconium evaluations

David Brown

for H.I.Kim, S. Mughabghab M. Herman, A. Trkov, R. Capote, and R. Arcilla

a passion for discovery

Office of Science

EMPIRE evaluation

- Leakage problems
- Resolution: fixed with JENDL-4
- Improved testing
- Next steps

About Zr and the evaluations

- Zr is a corrosion resistant material with low thermal neutron absorption cross section, so it is ideal in many reactor applications
- ⁹⁰Zr is magic so has low level density & lots of fluctuations
- 1970's ENDF/B-VI.8 evaluations
 - fits of cross sections
 - no gamma production, no double differential data
- 2000's ENDF/B-VII.0 evaluations
 - EMPIRE based
 - model based cross sections did not reproduce fluctuations
 - after release, learned performed poorly in TRIGA C132, C133 benchmarks

3

H.I. Kim, S. Mughabghab and R. Capote re-evaluated Zr isotopes with EMPIRE, fitting ENDF/B-VI.8 (n,tot)

- EMPIRE evaluation
- Leakage problems
- Resolution: fixed with JENDL-4
- Improved testing
- Next steps

Strange (n,el) angular distributions changed leakage

Backward peaked at low energy?!?

Note: This keeps low energy neutrons from leaking out by scattering them back into the system, increasing k_{eff}

Reported by C. Lubitz, T. Trumbull

Brookhaven Science Associates

ENDF/B-VI.8 Ei8.00E-3 JENDL-4 Ei8.00E-3 0.48 BNL-final Ei8.00E-3 E = 8 eV0.47 (Js/q) 0.45 б Ю0.44 0.43 0.42 0.46 – ENDF/B-VI.8 Ei1.50E+4 – JENEL-4 Ei1.50E+4 – BNL-finel Ei1.50E+4 $E = 15 \, keV$ 0.44 (Js/q) 70.40 (Js/q) 700.40 0.38 0.36 50 100 150 0 Angle (deg) 6

- EMPIRE evaluation
- Leakage problems
- Resolution: fixed with JENDL-4
- Improved testing
- Next steps

Brookhaven Science Associates

Given the short time-scale before ENDF/B-VII.1 due, we looked to other libraries

- Since the double differential (n,el) cross section is $\frac{d\sigma(E)}{d\Omega} = (2\pi)^{-1}\sigma(E)P(E|\mu)$
- We can preserve the excellent (n,el) total cross section by replacing only the $P(E|\mu)$ in file 4
- JENDL-4 used Koning-Deleroche OMP, a reasonable substitute given that we are at a closed shell
- FUDGE made this substitution simple

8

You call it a Franken-evaluation, we say that it is a strong case for organ donation

Said took this opportunity to start updating the resonances

- ⁹⁰Zr all new
- ⁹¹Zr first pass at fixes

	90 Zr		91 Zr	
Reaction	σ_T (barn)	$ I_{\gamma} $ (barn)	σ_T (barn)	I_{γ} (barn)
Total	5.50762	-	11.0729	-
Elastic	5.49765	-	9.85728	-
Capture	9.97256×10^{-3}	0.132506	1.21566	6.0062

10

Brookhaven Science Associates

- EMPIRE evaluation
- Leakage problems
- Resolution: fixed with JENDL-4
- Improved testing
- Next steps

Brookhaven Science Associates

Benchmarking of new evaluations

- EMPIRE evaluation
- Leakage problems
- Resolution: fixed with JENDL-4
- Improved testing
- Next steps

Next steps

Said to finish redoing all resonances

- ⁹¹Zr to get major RRR upgrade: fit most of fluctuations with extended RRR instead of tuned EMPIRE calc.
- ⁹²⁻⁹⁴Zr could use updates
- ⁹⁵Zr crap (URR only)
- Redo EMPIRE calculations with new soft-rotor OMP
- Make sure distributions are well behaved

14