# On sensitivity analysis from first principles (D & <sup>16</sup>O neutron scattering)

Dan Roubtsov, Ken Kozier AECL, CRL (Canada) November, 2011 Nuclear Data @ BNL, USA



• Nuclear Data (ENDF)  $(\mathbf{x} = (n,n), (n,\gamma), \text{ etc.})$  $\sigma_x(E) \pm \Delta \sigma_x(E)$ , cross-section of reaction channel  $\mathbf{x}$ , in barns

For a nuclide A without explicit resonance parameters:  $E_j$ ,  $\sigma_{x, j}$  and  $E_k$ ,  $cov_{x, kk'}$  in the nuclear data file (ENDF)

$$(\Delta \sigma_x(E_j))^2 = cov_{x, kk}$$
 (  $E_j$  belongs to *k*-th energy bin ( $E_k$ ,  $E_{k+1}$ ))

Often relative covariance matrices are given,

 $\operatorname{cov}_{x, \, kk'} \to \operatorname{cov}_{x, \, kk'}/(\sigma_{x,k}*\sigma_{x,k'})$ and, from  $\operatorname{cov}_{x, \, kk}$ , we have  $\Delta \sigma_x(\mathsf{E}_j)/\sigma_x(\mathsf{E}_j)$ , the relative uncertainty, in %. When  $\sigma_x(\mathsf{E}) \to \sigma_x(\mathsf{E};\mathsf{T})$ , for  $\Delta \sigma_x(\mathsf{E};\mathsf{T})$ , one can use  $\Delta \sigma_x(\mathsf{E}_j)/\sigma_x(\mathsf{E}_j)$ obtained from  $\operatorname{cov}_{x, \, kk}$  given in the evaluated data file.

# Introduction (Motivation)

## • Reactor Physics: $k_{eff} [\sigma_x(E; T)]$ , CVR [ $\sigma_x(E; T)$ ], FTC [ $\sigma_x(E; T)$ ]

If we know  $\Delta \sigma_x(E,T)/\sigma_x(E,T)$  from  $cov_{x, kk}$  (=  $\Delta \sigma_x(E_j)/\sigma_x(E_j)$ , in %), then we have  $\sigma_x(E,T) \pm \Delta \sigma_x(E,T)$  and ask what is the error propagation:  $k_{eff} \pm \Delta k_{eff}$ , CVR  $\pm \Delta$ CVR, etc.?

• Observation:

for many light nuclides (H, O, and C, N),  
at low neutron energies (E < 1-10 keV),  
$$\sigma_x(E, T = 0 \text{ K}), x = (n,n), (n,\gamma), (n,\alpha)$$
  
as  $\sigma_x$  vs. E, is simple (and structure-less):

 $\sigma_{s}(\mathsf{E},\,\mathsf{T}=0\;\mathsf{K})$  ~ const and  $\sigma_{n,\gamma}(\mathsf{E})\propto(\mathsf{E})^{\frac{1}{2}}$  .

Then one parameter, thermal cross section,  $\sigma_{x, th} = \sigma_x(E = 0.0253 \text{ eV})$ , can be used to represent  $\sigma_x(E, T)$  at low energies (and at any given T).

### **UNRESTRICTED / ILLIMITÉ**

A AFCL FACL



(Thermal) Neutron Spectrum of 37-el. bundle (MOX) in ZED-2 A(n,n)A x-sections at T = 0 K AECL EACL

# x-section [ b ]



### (Thermal) Neutron Spectrum (MOX, ZED-2 reactor, CRL) and A(n,n)A x-sections at T=0 K and at room temperature UNRESTRICTED / ILLIMITÉ

x-section [ b ]

- For nuclide A, the **thermal** cross sections are well-known:  $\sigma_{s,th} \pm \Delta \sigma_{s,th}$  (for scattering, this is T  $\rightarrow$  0 K value)  $\sigma_{(n,\gamma),th} \pm \Delta \sigma_{(n,\gamma),th}$  (1/v behaviour is invariant under T broadening)
- For many light nuclides,  $\sigma_x(E,T) \pm \Delta \sigma_x(E,T)$  is determined by  $\sigma_{x,th} \pm \Delta \sigma_{x,th}$ , at low neutron energies as E < 1-10 keV, i.e.,  $\sigma_x(E,T)[\sigma_{x,th}]$
- Reactor Physics: k<sub>eff</sub> [ σ<sub>x</sub>(E; T) [ σ<sub>x, th</sub> ] ] = k<sub>eff</sub> ( σ<sub>x,th</sub> ), a function (?), for example, k<sub>eff</sub> = k<sub>eff</sub> ( σ<sub>s,th</sub>, σ<sub>(n,γ),th</sub> )

we can address  $\sigma_{x,th} \pm \Delta \sigma_{x,th} \rightarrow k_{eff} \pm \Delta k_{eff}$ ,  $k_{eff} = k_{eff} [\sigma_x(E;T)]$ 

if, for a given nuclide, we can calculate  $\mathbf{k}_{eff} \mathbf{vs.} \sigma_{s,th}$  and  $\mathbf{k}_{eff} \mathbf{vs.} \sigma_{(n,\gamma),th}$  (and without applying any perturbation theory to neutron transport equation)

### **UNRESTRICTED / ILLIMITÉ**

A AFCL FACL

# Introduction (Motivation)

For a given nuclide A, we propose to construct a set of **trial evaluated nuclear data files** with different  $\sigma_{s,th}$  and  $\sigma_{(n,\gamma),th}$  chosen from the interval  $(\sigma_{s,th} - 2\Delta\sigma_{s,th}, \sigma_{s,th} + 2\Delta\sigma_{s,th})$  and  $(\sigma_{(n,\gamma),th} - 2\Delta\sigma_{(n,\gamma),th}, \sigma_{(n,\gamma),th} + 2\Delta\sigma_{(n,\gamma),th})$ 

Then we convert each trial ENDF file to the ACE file (at a given non-zero T), and run an MCNP case (full core / reactor lattice / ...) for each trial ACE data file. We obtain  $\mathbf{k}_{eff}$  ( $\sigma_{s,th}$ ,  $\sigma_{(n,\gamma),th}$ ) on a grid of thermal x-sections (for a nuclide A).

For H-2 and O-16, we have:

 $\sigma_{(n,\gamma),th} << \sigma_{s,th}$ 

H-2:  $0.508 \pm 0.015$  mb (±2.95%) <<  $3.390 \pm 0.012$  b (±0.35%) (Atlas-2006)

O-16:  $0.190 \pm 0.019 \text{ mb} (\pm 10.0\%) << 3.761 \pm 0.006 \text{ b} (\pm 0.16\%) (Atlas-2006)$ 

H-2:  $\sigma_{(n, \gamma)}(E) < 10^{-3} b \equiv 1 \text{ mb}$  at all  $E > 10^{-2} \text{ eV}$  ( $E_{th} = 0.0253 \text{ eV}$ ) O-16:  $\sigma_{(n, \gamma)}(E) < 10^{-3} b \equiv 1 \text{ mb}$  at all  $E > 10^{-3} \text{ eV}$ , we "fix"  $\sigma_{(n,\gamma),th}$  (and so  $\sigma_{(n,\gamma)}(E)$  at low E) and concentrate on  $\mathbf{k}_{eff} = \mathbf{k}_{eff} (\sigma_{s,th})$ 

# Problems with thermal x-sections for H-2 and O-16

H-2:  $\sigma_{s,th} = 3.390 \pm 0.012 \text{ b} (\pm 0.35\%)$ , Atlas- 2006  $\sigma_{tot,th} = 3.3905 \pm 0.0120 \text{ b} (\pm 0.35\%)$ , estimated by us from Atlas

 $\sigma_{s,th} = 3.3950 \pm 0.068 \text{ b} (\pm 2.0\%) (ENDF/B-VII.1beta)$  $\sigma_{tot,th} = 3.3955 \pm 0.051 \text{ b} (\pm 1.5\%) (ENDF/B-VII.1beta)$ 

O-16:  $\sigma_{s,th} = 3.761 \pm 0.006 \text{ b} (\pm 0.16\%)$  Atlas- 2006  $\sigma_{tot,th} = 3.7612 \pm 0.006 \text{ b} (\pm 0.16\%)$ , estimated by us from Atlas

 $\sigma_{s,th} = 3.85181 \pm 0.077 \text{ b} (\pm 2.0\%) (ENDF/B-VII.1beta)$   $\sigma_{tot,th} = 3.85200 \pm 0.077 \text{ b} (\pm 2.0\%) (ENDF/B-VII.1beta;$ *Optical Theorem at*  $E \rightarrow 0$  (?))

 $\sigma_{s,th} = 3.8408 \pm 0.038 \text{ b} (\pm 1.0\%) (JENDL 4.0 \text{ total is } \pm 1.0\%)$ 



# H-2: relative uncertainty of $\sigma_{tot}$ and $\sigma_s$ in BOLNA Low-Fidelity library, now in H-2 covariance file in ENDF/B-VII.1beta

At 10<sup>-2</sup> eV < E < 3.3 MeV,  $\sigma_{tot}(E) \approx \sigma_s(E)$  for deuterium, but  $\Delta \sigma_s / \sigma_s \approx 1.3 * \Delta \sigma_{tot} / \sigma_{tot}$  in BOLNA (?)

A AECL EACL



O-16: relative uncertainty of  $\sigma_s(E)$ , from O-16 covariance file in ENDF/B-VII.1beta4,  $\pm$  2% at E < 1 MeV  $\pm$  1% at E < 1 MeV (JENDL 4.0, JENDL 3.3)





H-2: relative uncertainty of  $\sigma_{tot}$  in ROSFOND-2008, and  $\Delta \sigma_s / \sigma_s \approx \Delta \sigma_{tot} / \sigma_{tot}$  at E < 3 MeV.







### $\sigma_{s}(E)$ for <sup>2</sup>H(n,n)<sup>2</sup>H reaction in our trial nuclear data files at low energies (T $\rightarrow$ 0 K, E < 0.2 MeV): "Whiskers model"

To address the propagation of uncertainty of  $\sigma_{s, th} = \sigma_s(E = 0.0253 \text{ eV}, T = 0 \text{ K})$  of a light nuclide to  $k_{\text{eff}}$  of critical assemblies/nuclear reactors, a **method of trial evaluations** (replica method) can be used; any trial  $\sigma_s(E; T= 0 \text{ K})$  is a continuous function of E. A AFCL FACL **UNRESTRICTED / ILLIMITÉ** 

#### "Whiskers Model" for n scattering x-sections of O-16 (sig\_s( E=0.0253 eV ) = 3.8 +- y ? b)



E [ eV ]

 $\sigma_s(E)$  for <sup>16</sup>O(n,n)<sup>16</sup>O reaction in our trial nuclear data files, T  $\rightarrow$  0 K, E < 0.3 MeV < E<sub>n</sub> = 0.43 MeV: "Whiskers model" AECL EACL

# HEU-SOL-THERM-004 benchmark: highly enriched U solution in SS sph., reflector: D<sub>2</sub>O



case 1, n(D)/n(U-235)  $\approx$  34  $R_1 \approx 17$  cm,  $R_2 \approx 44$  cm, at RT UNRESTRICTED / ILLIMITÉ  $UO_2F_2 \& D_2O$ case 6, n(D)/n(U-235)  $\approx 430$   $R_1 \approx 23$  cm,  $R_2 \approx 44$  cm, at RT A=23 cm,  $R_2 \approx 44$  cm, at RT

# HEU-SOL-THERM-020 benchmark: highly enriched U solution (UO<sub>2</sub>F<sub>2</sub>) in SS cylinder



• case 5: n(D)/n(U-235) = 2081 in solution  $R_1 \approx 1.4$  cm,  $R_2 \approx 38$  cm,  $H_{cr} \approx 84.7$  cm

1.005 1.004 1.003 1.002 1.001 1.000 0.999 0.998 0.997 0.996 0.995 0.994 0.993 0.992 0.991 Atlas (= Dilg) uncertainty 0.990 0.989 (+-0.35%)0.988 (+- 1.5%) 0.987 0.986 refl. spheres (case 6) 0.985 0.984 refl. spheres (case 1) 🕨 0.983 3.32 3.33 3.34 3.35 3.36 3.37 3.38 3.39 3.40 3.41 3.42 3.43 3.44 3.45 3.46

HEU-SOL-THERM-004, T = 300 K, B-VII.0 lib. + ROSFOND H-2

sigma\_sc\_th (H-2) [b]

<sup>2</sup>H:  $k_{eff}$  vs.  $\sigma_{s, th} = \sigma_{s}$  (E= 2.53\*10<sup>-2</sup> eV, T = 0 K) using "Whiskers model" for  $\sigma_{s}$  (E, T = 0 K), MCNP5 results, HEU-SOL-THERM benchmarks (spheres) AECL EACL WINNESTRICTED / ILLIMITÉ

k-eff

#### HEU-SOL-THERM-004, ICSBEP, Case 6 Table 7, MCNP(X)



E[eV]

Neutron spectrum of 'case 6' of HEU-SOL-THERM-004  $R_1 \approx 23 \text{ cm}, R_2 \approx 44 \text{ cm}, U-235 = 93.7\%$  (at) n(D)/n(U235) = 430 (in sphere 1 of  $R_1$ ) AECL EACL UNRESTRICTED / ILLIMITÉ

HEU-SOL-THERM-004, ICSBEP, Case 1 Table 7, MCNP(X)



E [eV]

### Neutron spectrum of 'case 1' of HEU-SOL-THERM-004 $R_1 \approx 17 \text{ cm}, R_2 \approx 44 \text{ cm}, U-235 = 93.7 \text{ (at\%)}$ $n(D)/n(U235) = 34 \text{ (in sphere 1 of } R_1) \text{ AECL EACL}$ UNRESTRICTED / ILLIMITÉ

HEU-SOL-THERM-020, T = 300 K, B-VII.O lib. + ROSFOND H-2



sigma\_sc\_th (H-2) [b]

 $k_{\rm eff}$  vs.  $\sigma_{\rm s, th} = \sigma_{\rm s}$  (E= 2.53\*10<sup>-2</sup> eV, T = 0 K) of <sup>2</sup>H, using "Whiskers model" for <sup>2</sup>H, MCNP5 results, HEU-SOL-THERM benchmarks: non-reflected cylinder(s)) case 5: U-235 = 93.7 % (at), n(D)/n(U-235) = 2085 (in solution) A AECL EACL **UNRESTRICTED / ILLIMITÉ** 

19

# Sensitivity to thermal scattering x-section (H-2)

•  $k_{\text{eff}} = k_{\text{eff}} [\sigma_{\text{s}}(E; T)] \rightarrow k_{\text{eff}} = k_{\text{eff}} (\sigma_{\text{s, th}})$ , one-parameter model

### H-2:

 $k_{\text{eff}} = k_{\text{eff}}(\sigma_{\text{s, th}})$  is a **linear function** of  $\sigma_{\text{s, th}}$  within  $\Delta \sigma_{\text{s, th}} \approx \pm 1.5\%$  near  $\sigma_{\text{s, th}} = 3.390$  b (the reference value for <sup>2</sup>H)  $k_{\text{eff}} \approx a * \sigma_{\text{s, th}} + b$ 

Sensitivity to  $\sigma_{s, th}$  (dimensional) =

change in  $k_{eff}$  per 1% change in  $\sigma_{s, th}$ , in *mk per percent* or *pcm per percent* 

Results for reflected spheres (HEU-SOL-THERM-004):

- Case 6 (R<sub>1</sub>  $\approx$ 23 cm, R<sub>2</sub>  $\approx$  44 cm): 5.0 mk per %  $\sigma_{s, th}$  1 mk = 100 pcm
- Case 1 (R<sub>1</sub> ≈17 cm, R<sub>2</sub> ≈ 44 cm): 2.8 mk per % σ<sub>s, th</sub>
  Results for non-reflected cylinders (HEU-SOL-THERM-020):
- Case 5 (R  $\approx$  38 cm) : 5.3 mk per %  $\sigma_{s, th}$

UNRESTRICTED / ILLIMITÉ

A AFCL FACL



HEU-SOL-THERM-004 (ICSBEP), H-2 and O-16 based on RosFond-2008

sig\_sc\_th (0-16) [ b ]

<sup>16</sup>O:  $k_{eff}$  vs.  $\sigma_{s, th} = \sigma_s$  (E= 2.54\*10<sup>-2</sup> eV, T = 0 K) using "Whiskers model" for  $\sigma_s$ (E). MCNP5, HEU-SOL-THERM, reflected spheres UNRESTRICTED / ILLIMITÉ

A AECL EACL

HEU-SOL-THERM-020 (ICSBEP), H-2 and O-16 based on RF-2008



sig\_sc\_th (0-16) [b]

<sup>16</sup>O: k<sub>eff</sub> vs. σ<sub>s</sub>(E= 2.54\*10<sup>-2</sup> eV) using "Whiskers model" for σ<sub>s</sub>(E). MCNP5, HEU-SOL-THERM, non-reflected cylinder(s) AECL EACL MODEL UNRESTRICTED / ILLIMITÉ

# Sensitivity to thermal scattering x-section (0-16)

- $k_{\text{eff}} = k_{\text{eff}} [\sigma_{\text{s}}(E; T)] \rightarrow k_{\text{eff}} = k_{\text{eff}} (\sigma_{\text{s, th}})$ , one-parameter model
- We expect  $k_{eff} = k_{eff}(\sigma_{s, th})$  to be a **linear function** of  $\sigma_{s, th}$ within  $\Delta \sigma_{s, th} / \sigma_{s, th} \approx \pm 1-2\%$  near  $\sigma_{s, th} = 3.852$  b (the modern reference value for <sup>16</sup>O was chosen, ROSFOND = ENDF/B-VII.0).

$$\kappa_{\rm eff} \approx a * \sigma_{\rm s, th} + D$$

- Sensitivity (dimensional) = change in  $k_{eff}$  per 1% change in  $\sigma_{s, th}$ , in *mk per percent* or *pcm per percent*, 1 mk = 100 pcm
- Results for reflected spheres (HEU-SOL-THERM-004).
- Case 6 (R<sub>1</sub>  $\approx$ 23 cm, R<sub>2</sub>  $\approx$  44 cm): ~ 2 mk per %  $\sigma_{s, th}$
- Case 1 (R<sub>1</sub> ≈17 cm, R<sub>2</sub> ≈ 44 cm): ~ 1.3 mk per % σ<sub>s, th</sub> Result for non-reflected cylinders (HEU-SOL-THERM-020)
- Case 5 (R  $\approx$  38 cm) : ~ 2 mk per %  $\sigma_{s, th}$

approx. 2-2.5 times smaller than for the sensitivity for  $\sigma_{s, th}$  (H-2) AECL EACL MARKET EACL EACL MARKET ILLIMITÉ

# **On uncertainty of k-eff**

 to address the problem of propagation of x-section uncertaintines, in particular,

 $\begin{array}{ll} \sigma_{\rm s,th}\pm\Delta\sigma_{\rm s,th}\rightarrow k_{\rm eff}\pm\Delta k_{\rm eff}\\ {\rm using} & k_{\rm eff}\approx a\ast\sigma_{\rm s,\,th}+b\\ {\rm or~(dimensional)~sensitivity~of~k_{\rm eff}~to~\sigma_{\rm s,th}~in~mk~per~percent,}\\ {\rm we~need~a~realistic~estimate~of~}\Delta\sigma_{\rm s,th}\end{array}$ 

- If  $\Delta \sigma_{s,th} \sim \pm 1-2\%$  for an important nuclide, we can obtain  $\Delta k_{eff} \sim \pm 1$  mk (±100 pcm), say, ± several mk
- If, in fact,  $\Delta \sigma_{s,th} \sim \pm 0.1$ -0.2% for this important nuclide, we have  $\Delta k_{eff} \sim \pm 0.1$  mk (±10 pcm),

thanks to the linearity of the problem,  $k_{eff} = k_{eff} (\sigma_{s,th})$  within  $\Delta \sigma_{s,th} \sim \pm 1-2\%$ 

**UNRESTRICTED / ILLIMITÉ** 

A AFCL FACL

### H-2: realistic estimates of $\sigma_{s,th}$ and $\Delta \sigma_{s,th}$



Asymptotic behavior of  $\sigma_{tot}(E)$  of our trail evaluations of <sup>2</sup>H based on ROSFOND-2008 in comparison with low-energy experimental data.

 $\sigma_{\rm s, th}(^{2}{\rm H}) = 3.390 \pm 0.012 \text{ b}$  in ROSFOND-2008 (= Atlas-2006  $\pm 0.35\%$  )

### **UNRESTRICTED / ILLIMITÉ**

A AECL EACI

### H-2: realistic estimates of $\sigma_{s,th}$ and $\Delta \sigma_{s,th}$



Asymptotic behavior of  $\sigma_{tot}(E)$  of our trail evaluations of <sup>2</sup>H based on ROSFOND-2008 in comparison with experimental data

at fast neutron energies (±1.0-1.4%).

### **O-16:** realistic estimates of $\sigma_{s,th}$ and $\Delta \sigma_{s,th}$



 $\sigma_{tot}({}^{16}\text{O})$  and  $\sigma_{tot}(\text{O-nat})$  from EXFOR data base and different evaluations of  ${}^{16}\text{O}$ .  $\sigma_{sc, th}({}^{16}\text{O}) = 3.76440$  b in BROND 2.2, compare with  $\sigma_{s, th} = 3.761 \pm 0.006$  b of Atlas-2006 and  $\sigma_{s, th} = 3.8408$  b  $\pm 0.038$  b of JENDL 4.0 Lowest Ohkubo-1984 data points:  $\pm 0.064$  b (~  $\pm 1.65\%$ ), but ... A AECL EACL MORESTRICTED / ILLIMITÉ

# **O-16:** realistic estimates of $\sigma_{s,th}$ and $\Delta \sigma_{s,th}$ , and $b_{coh} \pm \Delta b_{coh}$ (scattering length)

 On the other hand, the evaluation of the <sup>16</sup>O thermal values is the same in both the Mughabghab-1982 and Mughabghab-2006 editions of the well-known Atlas of Neutron Resonances:

• 
$$\sigma_{n,\gamma}$$
 (<sup>16</sup>O) = 1.90\*10<sup>-4</sup> ± 0.19\*10<sup>-4</sup> b,

- $\sigma_{\rm sc}({}^{16}{\rm O}) = 3.761 \pm 0.006 \text{ b} \ (\approx \pm 0.16\%),$
- $b_{coh}(^{16}O) = 5.805 \pm 0.005$  fm, and  $a_{pot} = 4.8 \pm 0.1$  fm assuming -3.27 MeV local level E<sub>n</sub> (fictitious *s*-resonance).
- Note the consistency of Mughabghab's estimates of  $\sigma_{sc}$  and  $b_{coh}$  of <sup>16</sup>O:  $b_{coh} = (A+1/A)*a_{coh} + Z*b_{n,e}$ , A = 15.85751, Z = 8,  $b_{n,e} \approx -1.38*10^{-3}$  fm and

$$\sigma_{\rm sc} = \sigma_{\rm coh} = 4\pi * a_{\rm coh}^2$$
. (For <sup>16</sup>O and <sup>18</sup>O,  $\hbar = 0^+$ .)

• The estimate of  $b_{coh}(O-nat) = 5.805 \pm 0.004$  fm is used in neutron optics, e.g., in the latest measurements of  $b_{coh}(H)$  and  $b_{coh}(D)$  for oxygen correction. but  $\sigma_{sc}(^{16}O) = 3.852 \pm 0.038$  b  $\rightarrow b_{coh}(^{16}O) = 5.875 \pm 0.029$  fm AECL EACL

# Conclusion

• Sensitivity of k-eff to the **thermal** scattering cross section (of nuclide A):

"Whiskers model" and the trial evaluations for H-2 and O-16 it works for HEU heavy water benchmarks; it also works for more realistic applications (ZED-2 cores, etc.)

 Uncertainty of k-eff due to the uncertainty of thermal scattering cross sections:

one needs realistic estimates of  $\Delta \sigma_{\rm s,th}$ 

for reactors/critical assemblies with the thermal neutral spectrum.

the target uncertainty,  $\Delta \sigma_{s,th}$ , for important nuclides ~ ±0.1% (not ~ ±1%)

What are reliable (consistent) values for  $\sigma_{sc,th}(^{16}O)$  and  $b_{coh}(^{16}O)$ ?

