

Capture Cross Section Adjustments in the Thermal to Fast Energy Regions

CSEWG Meeting Upton , NY

November 15-18, 2011

S. F. Mughabghab*

National Nuclear Data Center Brookhaven National Laboratory

*Email: mugabgab@bnl.gov

Brookhaven Science Associates

Basis for changes and improvements

- New differential data.
- New integral benchmarks

a. Reactivity worth measurements at Dimple reactor, thermal and fast neutron spectra, (Dean et al. 2007)

b. Irradiations at CEA fast reactor, PHENIX, (Palmiotti et al. MCNP analysis, 2011).

NATIONAL

Methodology (continued)

• Physics considerations: a. recent results of variation of (average p-wave capture width) / (average s-wave capture width) with A, b. accurate derivations of R', S_0 , and S_1 from average (n, tot), c. comparisons of calculated resonance integrals with the Atlas values, d. comparisons of the calculated 30-keV Maxwellian capture cross sections with the Kadonis data base (Pritychenko Talk).

Comparison of $\Gamma_{\gamma 1}/\Gamma_{\gamma 0}$ with S1

CORRELATION BETWEEN GG1/GG0 AND S1

RED LINE = P-WAVE NEUTRON SF GREEN LINE FIT TO ALL DATA BELOW 244

Comparison: integral and differential data (Dean 2007)

FP ISOtOPE	JEF SOF	3.1 T	WPEC23 SOFT	JF3.1 PWR	WPEC PWR	WPEC/JEF SOFT PWR
Mo-95 X	+	9	+9	0	0	1.0 1.0
Tc-99 X	+	9	+10	+8	+10	1.1 1.3
Rh-103 X	+'	10	+12	+6	+8	1.2 1.3
Ag-109	+	5	+5	+2	+2	1.0 1.0
Cs-133 X	+	11	+11	+10	+10	1.0 1.0
Nd-143	-	1	-2	-3	-6	2.0 3.0
Nd-145 X	+	1	+13	+1	+11	13 11 XXX
Sm-147	+	7	+3	+4	0	0.4 0.0
Sm-149	+	2	0	-4	-6	0.0 1.5
Sm-152		0	-1	0	0	
Eu-153 X	-1	1	-11	-6	-6	1.0 1.0
Gd155	+	4	+4	+3	+3	1.0 1.0

NATIONAL LABORA

⁵⁸Co

- ENDF/B-VII.0 adopted JEFF3.3
- 1. Thermal (n,γ) and I_{γ} discrepant with Atlas values.
- 2. Very large negative C/S in background.
- 3. Thermal (n,p) C/S seems quite high in this mass region, 1700 b.

The result is an original BNL evaluation for this nucleus.

- Atlas methodology below the fast region and EMPIRE calculations above it.
- Aside from thermal (n,γ) and I_{γ} , no other measured neutron data are available.
- Since (n, p) threshold is open below neutron separation energy, two methods were applied to estimate the thermal (n, p) C/S.
- Reciprocity theorem applied to reaction ⁵⁸Fe(p, n)⁵⁸Co to obtain the (n, p) cross section

- Ratio of (n , p) cross section of ⁵⁸Co to that of ⁵⁹Ni was computed by EMPIRE and normalized to the ⁵⁹Ni thermal value, 1.43 ± 0.13 b. The result from both methods is (n , p)= 101 b for ⁵⁸Co.
- The thermal (n,γ) and I_{γ} are attributed to a resonance located at 10.35 eV.
- Equidistant resonances with D=330 eV are invoked up to 3.0 keV
- URR region spans 3.0 keV- 24.9 keV.

⁵⁸Co Capture

Said Mughaghab

Nuclear Data 2010, Jeju Island, Korea, April 26-30, 2010

9

¹⁴⁵Nd

10

¹⁵³Eu

THERMAL CAPTURE C/S (b)	METHOD	AUTHOR
295 ± 5	ACTIVATION	HEFT-1978
603 ± 23	ACTIVATION	GRYNTAKIS-1975
405 ± 30	PILE OSCILATOR	LUCAS-1975
639 ± 7	ACTIVATION	SIMS-1967
317 ±5	PILE OSCILATOR	TATTERSALL-1960
448 ±16	TOTAL CROSS SECTION	PATTENDEN-1958
421 ± 30	MASS SEPARATION	HAYDEN-1949

Results

Н

¹⁵³Eu

BRI

¹⁵³Eu

153

HH

TESTING (Palmiotti et al.)

Capture c/s	ENDF/B-VII C/E	ENDF/BVII.1bet5 C/E	Exp. Uncertai. %
²³⁸ Pu	1.299	1.136	4.0%
²³⁹ Pu	0.906	0.906	3.0%
²⁴⁰ Pu	0.964	0.945	2.2%
²⁴² Pu	1.061	1.020	3.5%
²⁴³ Am	0.834	0.939	5.0%
¹⁰¹ Ru	1.101	1.095	3.6%
¹⁰⁵ Pd	0.852	0.845	4.0%
¹³³ Cs	0.878	0.827	4.7%
¹⁴⁵ Nd	0.955	0.936	3.8%
¹⁴⁹ Sm	0.915	0.908	3.1%
⁹⁵ Mo	1.032	1.063	3.8%

Comparison: integral and differential data (Dean 2007)

FP ISOtOPE	JEF3.1 SOFT	WPEC23 SOFT	JF3.1 PWR	WPEC PWR	WPEC/JEF SOFT PWR
Mo-95 X	+9	+9 X	0	0	1.0 1.0
Tc-99 X	+9	+10 X	+8	+10 Y	1.1 1.3
Rh-103 X	+10	+12 X	+6	+8 Y	1.2 1.3
Ag-109	+5	+5	+2	+2	1.0 1.0
Cs-133 X	+11	+11 X	+10	+10 Y	1.0 1.0
Nd-143	-1	-2	-3	-6	2.0 3.0
Nd-145 X	+1	+13 X	+1	+11 Y	13 11
Sm-147	+7	+3	+4	0	0.4 0.0
Sm-149	+2	0	-4	-6	0.0 1.5
Sm-152	0	-1	0	0	
Eu-153 X	-11	-11 X	-6	-6	1.0 1.0
Gd155	+4	+4	+3	+3	1.0 1.0

NATIONAL LABORA

Comparisons VII.0 and VII.1 fission products

Nucleus	capture ENDF/BVII.1	capture ENDF/BVII.0	lγ ENDF/BVII.1	lγ ENDF/BVII.0
⁹² Mo	0.080	0.02075	0.0864	0.0968
⁹⁵ Mo	13.1	13.57	104.4	110.28
⁹⁹ Tc	20.0	22.80	322.4	361.7
¹⁰³ Rh	142.0	144.9	967.5	1034.3
¹⁰⁹ Ag	90.23	91.08	1467	1473
¹³³ Cs	29.0	29.0	366.0 xk	420.5
¹⁴⁵ Nd	42.0	49.8	222.8	245.0
¹⁵³ Eu	358.0	312.7	1419	1410

Comparisons VII.0 and VII.1

Nucleus	capture ENDF/BVII.1	capture ENDF/BVII.0	lγ ENDF/BVII.1	lγ ENDF/BVII.0
⁵⁸ CO	1855	172	6519	221
⁶² Ni	14.9	14.4	7.26	6.01
⁹⁰ Zr	0.010	0.078	0.13	0.19
⁹¹ Zr	1.22	0.832	5.99	5.88
¹¹³ Cd	19860	20610	383	392
¹⁵⁷ Gd	236500	254200	732.8	753.3
²⁴³ Am	80.40	75.1	2051	1819
²⁴² Pu	21.26	19.2	1123.4	1273

Actinides

²⁴²Pu Thermal, resolved and URR changed Fast region decreased by 20% based on a renormalized integral value of Druzhinin et. al. ²⁴³Am Thermal, resolved and URR changed Previously fast region of Weston +Todd based on thermal capture of 75.1 b. New value is 80.4 b. Fast region normalized to URR, +15.5%

¹⁵⁷Gd Comparison with JENDL4.0

ENDF/BVII.1

JENDL4.1

- **BNL** resonance
- Thermal capture= 253317 b 236500 b (RPI) No background Integral benchmarks

- RPI resonance
- Thermal capture = 253250 b
- Huge background Integral benchmarks

¹⁶⁹Tm Puzzle

 Low Energy <2 keV</th>
 Fast Energy > 3keV

 Atlas
 Macklin et al.

 $S_0 = 1.60 \pm 0.12$ $S_0 = 2.89 \pm 0.67$
 $\Gamma_{\gamma} = 0.086 \pm 0.007 \text{ eV}$ $\Gamma_{\gamma} = 0.120 \text{ eV}$ RR

Dilg 1971 at 2.7 keV

 $S_0 = 2.1 + 0.5$

Nuclear Data 2010, Jeju Island, Korea, April 26-30, 2010

NATIONAL

LSF Fit of ¹⁶⁹Tm Capture

22

¹⁶⁹Tm Possible Solution

Experimental Measurement at 2.8 keV: 24.7-+2.0 keV Dilg and Vonach 1971 S_0 E (keV) Total (b) Capture (b) 2.81.60 19.794.932.82.22 24.585.72 2.8 2.8929.766.38

23

LSF Fit of ¹⁶⁹Tm Capture

¹⁶⁹Tm Solution

Low Energy <2 keV Fast Energy > 3keV Atlas Mughabghab(URR) $S_0 = 1.60 \pm 0.12$ $S_0 = 2.22 \pm 0.50$ $\Gamma_v = 0.086 \pm 0.007 \text{ eV}$ $\Gamma_v = 0.1219 \pm 0.0026$ $\Gamma_v = 0.120 \text{eV} \text{ Macklin}$ **.e** Possible explanation: Doorway state 3-8keV Then Γ_{v} is strongly correlated with S_{0} Total C/S in URR region strongly urged for RPI

Conclusion and Summary

- 6 important FP evaluations updated on basis of Dean et al. reactivity results.
- 6 other evaluations updated, including Gd -157, Cd-113, and Co-58(new).
- Pu-242, Am243 updated on basis of Plalmioti and Hiruta analysis
- Palmiotti et al. ENDF/B-VII.1 testing shed light in the fast region on Pd105, Cs-133, Nd-145 Sm-149. Results show that future attention in fast region is required.

