Argonne Data Testing for ENDF/B-VII. 1

Cross Section Evaluation Working Group Meeting
November 15-17, 2011
Brookhaven National Laboratory
R. M. Lell and R. D. McKnight

Nuclear Engineering Division
Argonne National Laboratory

Overview

- A set of benchmark calculations have been selected primarily to complement analyses being done by others .
- Detailed as-built models, now available for a series of 38 Argonne ZPR/ZPPR critical assemblies, have been used.
- These models represent the physical dimensions and masses of each and every plate, can, drawer and matrix tube and the interstitial gaps among these materials for the as-built material loadings for each of these assemblies, i.e., no significant approximations or biases are introduced in these models.
- 13 high enriched uranium (HEU) configurations, 9 intermediate enriched uranium (IEU) configurations, 14 mixed-(Pu,U) configurations, and 2 Pu metal configurations were analyzed.

Overview

- Four types of experiments analyzed.
- Criticality
- $\beta_{\text {eff }}$
- Sodium-Void Worths
- Control Rod and Control Rod Position Worths
- Analyses of these detailed models were performed using MCNP5 and NJOY with both ENDF/B-VII. 0 and -VII. 1 data.
- Typically, 250 million neutron histories with 1-sigma uncertainties on $\mathrm{k}_{\text {eff }}$'s and $\delta \mathrm{k}^{\prime} \mathrm{s}$ of $\sim 3 \mathrm{pcm}$ and $\sim 4 \mathrm{pcm}$, respectively.

MCNP5 Calculations with "As-built" Models for HEU FAST and INTER ZPR/ZPPR Assemblies

The average bias of the values obtained with ENDF/B-VII. 0 data was over $1 \% \delta \mathrm{k} / \mathrm{k}(1042 \mathrm{pcm})$; the largest bias (ZPR9/4) was almost $2 \% \delta k / k(1948 \mathrm{pcm})$. All $13 \mathrm{k}_{\text {eff }}$'s were reduced with the ENDF/B-VII. 1 data and the average bias of the values obtained with these data was $<0.5 \% ~ \delta k / k(463 \mathrm{pcm})$. The bias for ZPR-9/4 was reduced by $>1.2 \% \delta \mathrm{k} / \mathrm{k}$ to $\sim 0.7 \%$ $\delta \mathrm{k} / \mathrm{k}$ with the ENDF/B-VII. 1 data.

MCNP5 Calculations with "As-built" Models for IEU FAST and INTER ZPR/ZPPR Assemblies

7 of the 9 IEU assemblies were over-predicted with the ENDF/B-VII. 0 data. The average bias of the values obtained with ENDF/B-VII. 0 data was $\sim 0.25 \% \delta k / k(270 \mathrm{pcm})$. Eight of the $9 \mathrm{k}_{\text {eff }}$'s were reduced and 1 unchanged with the ENDF/B-VII. 1 data and the average bias of the values obtained with these data was reduced by one-half (134 ± 115 pcm).

MCNP5 Calculations with "As-built" Models for MIXED (Pu, U) FAST and INTER ZPR/ZPPR Assemblies

For the mixed-(Pu,U) assemblies, 14 calculated $\mathrm{k}_{\text {eff }}$'s were reduced with the ENDF/B-VII. 1 data by approximately $60-215 \mathrm{pcm}$. The average bias for the 14 assemblies with ENDF/B-VII. 0 data is 271 pcm ; the average bias with ENDF/B-VII. 1 data is 156 pcm . The biases for ZPR-3/53 and ZPR-3/54 with ENDF/B-VII. 0 data are 855 and 1233 pcm , respectively; and with ENDF/B-VII. 1 data are 755 and 1047 pcm, respectively. The average bias for the other 12 assemblies with ENDF/B-VII. 0 data is 142 pcm ; the average bias with ENDF/B-VII. 1 data is 31 pcm .

MCNP5 Calculations with "As-built" Models for Pu Metal FAST and INTER ZPR/ZPPR Assemblies

Average Values of C/E-1 (in pcm) for ENDF/B-VII. 1 according to Fuel Type in ZPR/ZPPR Assemblies

Fuel Type	\# of Expts	ENDF/B-VII. 0 mean values, pcm			ENDF/B-VII. 1 mean values, pcm			Δk Difference (VII. 1 - VII.0)		
		C/E-1	\pm	σ	C/E-1	\pm	σ	Δk	\pm	σ
Pu-Metal ${ }^{\text {a }}$	2	2005	\pm	143	1327	\pm	143	-679	\pm	
Mixed (Pu,U)	14	271	\pm	114	156	\pm	114	-120	\pm	9
HEU	13	1042	\pm	201	463	\pm	201	-576	\pm	9
IEU	9	270	\pm	115	134	\pm	115	-151	\pm	7

a Mean values are perhaps not meaningful for these assemblies because there were only 2 experiments with distinctly different energy spectra and performance

Measured and Calculated Values of Beta-effective obtained with ENDF/B-VII. 1 Data`

ICSBEP Identifier	ZPR Assembly	$\begin{aligned} & \text { Experiment } \\ & \beta_{\text {eff }} \pm \sigma \end{aligned}$	ENDF/B Version	Calculated $\beta_{\text {eff }} \pm \sigma$	$\mathrm{C} / \mathrm{E} \pm \mathrm{\sigma}$
HMI-001	$\begin{gathered} \text { ZPR-9/34 } \\ (\mathrm{U} / \mathrm{Fe}) \end{gathered}$	0.00657 ± 0.00013	$\begin{aligned} & \text { VII. } 0 \\ & \text { VII. } 1 \end{aligned}$	$\begin{aligned} & 0.00681 \pm 0.00006 \\ & 0.00682 \pm 0.00006 \end{aligned}$	$\begin{aligned} & 1.037 \pm 0.023 \\ & 1.038 \pm 0.023 \end{aligned}$
IMF-010	$\begin{gathered} \text { ZPR-6/9 } \\ \text { (U9) } \end{gathered}$	0.00706 ± 0.00009	$\begin{aligned} & \text { VII. } 0 \\ & \text { VII. } 1 \end{aligned}$	$\begin{aligned} & 0.00716 \pm 0.00006 \\ & 0.00707 \pm 0.00006 \end{aligned}$	$\begin{aligned} & 1.014 \pm 0.016 \\ & 1.001 \pm 0.016 \end{aligned}$
PMI-002	$\begin{aligned} & \text { ZPR-6/10 } \\ & \text { (PuC/SST) } \end{aligned}$	0.00222 ± 0.00005	$\begin{aligned} & \text { VII. } 0 \\ & \text { VII. } 1 \end{aligned}$	$\begin{aligned} & 0.00224 \pm 0.00003 \\ & 0.00224 \pm 0.00003 \end{aligned}$	$\begin{aligned} & 1.009 \pm 0.029 \\ & 1.009 \pm 0.029 \end{aligned}$

Sodium-Void Worth Measurements in ZPPR-9 and Calculated Values obtained with ENDF/B-VII. 1 Data

Void Region	$\begin{gathered} \text { Experiment } \\ \rho_{\mathrm{Na}} \pm \sigma \\ (\mathrm{pcm}) \end{gathered}$	ENDF/B Version	Calculated $\begin{gathered} \rho_{\mathrm{Na}} \pm \sigma \\ (\mathrm{pcm}) \end{gathered}$	C/E- $1 \pm \sigma$ (\%)
8-inch axial region in 97 drawers per half	104 ± 1.81	$\begin{aligned} & \text { VII. } 0 \\ & \text { VII. } 1 \end{aligned}$	$\begin{aligned} & 106 \pm 4 \\ & 100 \pm 4 \end{aligned}$	$\begin{array}{r} 2.0 \pm 4.4 \\ -3.7 \pm 4.4 \end{array}$
20-inch axial region in 97 drawers per half	112 ± 1.88	$\begin{aligned} & \text { VII. } 0 \\ & \text { VII. } 1 \end{aligned}$	$\begin{aligned} & 109 \pm 4 \\ & 110 \pm 4 \end{aligned}$	$\begin{aligned} & -2.7 \pm 4.1 \\ & -2.6 \pm 4.1 \end{aligned}$
27-inch axial region in 97 drawers per half	86 ± 1.46	$\begin{aligned} & \text { VII. } 0 \\ & \text { VII. } 1 \end{aligned}$	$\begin{aligned} & 85 \pm 4 \\ & 78 \pm 4 \end{aligned}$	$\begin{aligned} & -0.8 \pm 5.2 \\ & -8.9 \pm 5.2 \end{aligned}$

Sodium-Void Worth Measurements in ZPPR-10A and Calculated Values obtained with ENDF/B-VIII. 1 Data

Void Region	Experiment $\rho_{\mathrm{Na}} \pm \sigma$ (pcm)	ENDF/B Version	Calculated $\begin{gathered} \rho_{\mathrm{Na}} \pm \sigma \\ (\mathrm{pcm}) \end{gathered}$	C/E-1 $\pm \mathbf{o}$ (\%)
8-inch axial region in 88 drawers per half	76 ± 0.88	$\begin{aligned} & \text { VII. } 0 \\ & \text { VII. } 1 \end{aligned}$	$\begin{aligned} & 88 \pm 4 \\ & 78 \pm 4 \end{aligned}$	$\begin{aligned} 15.9 & \pm 5.8 \\ 2.7 & \pm 5.8 \end{aligned}$
8-inch axial region in 172 drawers per half	145 ± 1.56	VII. 0 VII. 1	$\begin{aligned} & 153 \pm 4 \\ & 148 \pm 4 \end{aligned}$	$\begin{aligned} & 5.6 \pm 3.2 \\ & 2.3 \pm 3.2 \end{aligned}$
16-inch axial region in 172 drawers per half	187 ± 2.07	$\begin{aligned} & \text { VII. } 0 \\ & \text { VII. } 1 \end{aligned}$	$\begin{aligned} & 194 \pm 4 \\ & 192 \pm 4 \end{aligned}$	$\begin{aligned} & 3.7 \pm 2.6 \\ & 2.7 \pm 2.5 \end{aligned}$
16 -inch axial region in 172 drawers per half	159 ± 1.76	$\begin{aligned} & \text { VII. } 0 \\ & \text { VII. } 1 \end{aligned}$	$\begin{aligned} & 160 \pm 4 \\ & 154 \pm 4 \end{aligned}$	$\begin{array}{r} 0.8 \pm 2.9 \\ -2.9 \pm 2.9 \end{array}$

Sodium-Void Worth Measurements in ZPPR-15A and Calculated Values obtained with ENDF/B-VIII. 1 Data

Void Region	$\begin{aligned} & \text { Experiment } \\ & \rho_{\mathrm{Na}} \pm \sigma \\ & (\mathrm{pcm}) \end{aligned}$	ENDF/B Version	Calculated $\begin{gathered} \rho_{\mathrm{Na}} \pm \sigma \\ (\mathrm{pcm}) \end{gathered}$	$C / E-1 \pm \sigma$ (\%)
8-inch axial region in 148 drawers per half	370 ± 3.14	$\begin{aligned} & \text { VII. } 0 \\ & \text { VII. } 1 \end{aligned}$	$\begin{aligned} & 352 \pm 4 \\ & 356 \pm 4 \end{aligned}$	$\begin{aligned} & -4.9 \pm 1.4 \\ & -3.9 \pm 1.4 \end{aligned}$
14-inch axial region in 148 drawers per half	101 ± 0.90	$\begin{aligned} & \text { VII. } 0 \\ & \text { VII. } 1 \end{aligned}$	$\begin{aligned} & 89 \pm 4 \\ & 80 \pm 4 \end{aligned}$	$\begin{aligned} & -12.3 \pm 4.3 \\ & -21.1 \pm 4.3 \end{aligned}$
18-inch axial region in 148 drawers per half	-35 ± 0.46	$\begin{aligned} & \text { VII. } 0 \\ & \text { VII. } 1 \end{aligned}$	$\begin{aligned} & -39 \pm 4 \\ & -30 \pm 4 \end{aligned}$	$\begin{array}{r} 11.6 \pm 12.2 \\ -14.0 \end{array} \pm_{12.2}$
31-inch axial region in 148 drawers per half	-76 ± 1.55	VII. 0 VII. 1	$\begin{aligned} & -75 \pm 4 \\ & -84 \pm 4 \end{aligned}$	$\begin{array}{r} -1.5 \\ \pm 5.7 \\ 10.7 \end{array} \pm 5.8$

Control Rod (CR) and Control Rod Position (CRP) Measurements in ZPPR-9 and Calculated Values obtained with ENDF/B-VII. 1 Data

Void Region	```Experiment \rhoCr}\pm\mp@code{\sigma (pcm)```	ENDF/B Version	Calculated $\begin{gathered} \rho_{\mathrm{cr}} \pm \sigma \\ (\mathrm{pcm}) \end{gathered}$	C/E-1 $\pm \mathbf{o}$ (\%)
6 CRPs in Row 7	-968.6 ± 11.7	VII. 0 VII. 1	$\begin{aligned} & -990.7 \pm 4 \\ & -979.6 \pm 4 \end{aligned}$	$\begin{aligned} & 2.3 \pm 1.3 \\ & 1.1 \pm 1.3 \end{aligned}$
6 CRs in Row 7 (outer ring)	-6244.5 ± 73.1	$\begin{aligned} & \text { VII. } 0 \\ & \text { VII. } 1 \end{aligned}$	$\begin{aligned} & -6355.9 \pm 5 \\ & -6379.3 \pm 5 \end{aligned}$	$\begin{aligned} & 1.8 \pm 1.2 \\ & 2.2 \pm 1.2 \end{aligned}$
6 CRs 1-7 in center and middle ring	-6130.9 ± 74.2	$\begin{aligned} & \text { VII. } 0 \\ & \text { VII. } 1 \end{aligned}$	$\begin{aligned} & -6170.3 \pm 5 \\ & -6198.0 \pm 5 \end{aligned}$	$\begin{aligned} & 0.6 \pm 1.2 \\ & 1.1 \pm 1.2 \end{aligned}$
CRs 4 and 7	-2315.1 ± 27.7	VII. 0 VII. 1	$\begin{aligned} & -2373.8 \pm 4 \\ & -2372.3 \pm 4 \end{aligned}$	$\begin{aligned} & 2.5 \pm 1.2 \\ & 2.5 \pm 1.2 \end{aligned}$
Central 3x3 CR	-1178.6 ± 14.2	$\begin{aligned} & \text { VII. } 0 \\ & \text { VII. } 1 \end{aligned}$	$\begin{aligned} & -1208.9 \pm 4 \\ & -1209.3 \pm 4 \end{aligned}$	$\begin{aligned} & 2.6 \pm 1.3 \\ & 2.6 \pm 1.3 \end{aligned}$

Control Rod (CR) and Control Rod Position (CRP) Measurements in ZPPR-10A and Calculated Values obtained with ENDF/B-VII. 1 Data

Void Region	$\begin{gathered} \text { Experiment } \\ \rho_{\mathrm{cr}} \pm \sigma \\ (\mathrm{pcm}) \end{gathered}$	ENDF/B Version	Calculated $\begin{gathered} \rho_{\mathrm{cr}} \pm \sigma \\ (\mathrm{pcm}) \end{gathered}$	$C / E-1 \pm \sigma$ (\%)
Central Rod	-885.6 ± 10.2	VII. 0 VII. 1	$\begin{aligned} & -944.9 \pm 9 \\ & -953.4 \pm 4 \end{aligned}$	$\begin{aligned} & 6.7 \pm 1.6 \\ & 7.7 \pm 1.3 \end{aligned}$
6 CRs in Row 4 (6R4)	-4495.7 ± 47.5	$\begin{aligned} & \text { VII. } 0 \\ & \text { VII. } 1 \end{aligned}$	$\begin{aligned} & -4832.9 \pm 4 \\ & -4854.3 \pm 4 \end{aligned}$	$\begin{aligned} & 7.5 \pm 1.1 \\ & 8.0 \pm 1.1 \end{aligned}$
12 CRs in Row 7 $(6 R 7 C+6 R 7 F)$	-7155.8 ± 105.2	VII. 0 VII. 1	$\begin{aligned} & -7549.7 \pm 5 \\ & -7573.6 \pm 5 \end{aligned}$	$\begin{aligned} & 5.5 \pm 1.6 \\ & 5.8 \pm 1.6 \end{aligned}$
6 Row 7 corner rods (6R7C)	-3236.9 ± 37.3	$\begin{aligned} & \text { VII. } 0 \\ & \text { VII. } 1 \end{aligned}$	$\begin{aligned} & -3446.6 \pm 4 \\ & -3458.0 \pm 4 \end{aligned}$	$\begin{aligned} & 6.5 \pm 1.2 \\ & 6.8 \pm 1.2 \end{aligned}$

Control Rod (CR) and Control Rod Position (CRP) Measurements in ZPPR-15A and Calculated Values obtained with ENDF/B-VII. 1 Data

Void Region	$\begin{gathered} \text { Experiment } \\ \rho_{\mathrm{cr}} \pm \sigma \\ (\mathrm{pcm}) \end{gathered}$	ENDFIB Version	Calculated $\begin{aligned} & \rho_{\mathrm{cr}} \pm \sigma \\ & (\mathrm{pcm}) \end{aligned}$	C/E-1 $\pm \mathbf{\sigma}$ (\%)
Central $2 \times 2 \mathrm{Na}$ CRP	-160.8 ± 1.25	$\begin{aligned} & \text { VII. } 0 \\ & \text { VII. } 1 \end{aligned}$	$\begin{aligned} & -160 \pm 4 \\ & -156 \pm 4 \end{aligned}$	$\begin{aligned} & -0.6 \pm 2.8 \\ & -2.9 \pm 2.8 \end{aligned}$
Central $2 \times 2 \mathrm{CR}$ - 100\% natural $B_{4} C$	-1305.87 ± 8.88	$\begin{aligned} & \text { VII. } 0 \\ & \text { VII. } 1 \end{aligned}$	$\begin{aligned} & -1265 \pm 4 \\ & -1277 \pm 4 \end{aligned}$	$\begin{aligned} & -3.2 \pm 0.7 \\ & -2.2 \pm 0.7 \end{aligned}$
Central $2 \times 2 \mathrm{CR}$ 50\% natural $\mathrm{B}_{4} \mathrm{C}$	-999.043 ± 6.89	$\begin{aligned} & \text { VII. } 0 \\ & \text { VII. } 1 \end{aligned}$	$\begin{aligned} & -910 \pm 4 \\ & -932 \pm 4 \end{aligned}$	$\begin{aligned} & -8.9 \pm 0.8 \\ & -8.7 \pm 0.8 \end{aligned}$

