LA-UR-11-06327

Approved for public release; distribution is unlimited.

Title:	MCNP Results for ENDF/B-VII.1beta4
Author(s):	Russell D. Mosteller Brian C. Kiedrowski
Intended for:	2011 Annual CSEWG Meeting Brookhaven National Laboratory November 15 - 17, 2011

ī

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

MCNP Results for ENDF/B-VII.1β4

Russell D. Mosteller Theoretical Design Division

Brian C. Kiedrowski Computational Physics Divsion

Los Alamos National Laboratory

Presented at the 2011 CSEWG Meeting Brookhaven National Laboratory November 15-17, 2011

Results obtained with the MCNP Monte Carlo code and the ENDF/B-VII.1β4 nuclear data library are presented for a variety of benchmarks. Those results are compared with results for the same benchmarks obtained with MCNP and the ENDF/B-VII.0 nuclear data library.

Significant improvements are found for benchmarks that contain beryllium, cadmium, or tungsten, and some improvement for benchmarks with zirconium also is seen. The results for the benchmarks with beryllium suggest that further improvements still may be needed. The other benchmarks studied show only relatively minor or negligible changes.

A number of deficiencies previously identified for the ENDF/B-VII.0 library still remain for ENDF/B-VII.1 β 4. Those deficiencies include ²³⁵U cross sections in the unresolved resonance range, thermal cross sections for ²³⁹Pu, and fast cross sections for copper, ²³⁷Np, and ²³²Th.

MCNP Results for ENDF/B-VII.1β4

Russell D. Mosteller Theoretical Design Division mosteller@ lanl.gov

Brian C. Kiedrowski Computational Physics Division bckiedro@lanl.gov

Los Alamos National Laboratory

Presented at the 2011 CSEWG Meeting Brookhaven National Laboratory November 15-17, 2011

Overview of Presentation

Little if any change in results for for most cases in the expanded criticality validation suite for MCNP (e.g., metal spheres)

Improved results for benchmarks with tungsten, beryllium, cadmium, or zirconium

Results from some additional benchmarks with unresolved problems

Results for cases in the Rossi α validation suite

Summary and conclusions

Expanded Criticality Validation Suite for MCNP

Principal	Number of Benchmarks by Spectrum			
Fuel	Fast	Intermediate	Thermal	Total
²³³ U	10	1	7	18
HEU	29	5	6	40
IEU	10	1	6	17
LEU			8	8
Plutonium	21	1	14	36
Total	70	8	41	119

Calculations were performed for all of these benchmarks as well as several additional benchmarks

All benchmark specifications are taken from the International Handbook of Evaluated Criticality Safety Benchmark Experiments

Results for HEU Spheres

	Benchmark	MCNP5 k _{eff}		
Reflector	k _{eff}	ENDF/B-VII.1β4	ENDF/B-VII.0	
None	1.0000 ± 0.0010	0.9997 ± 0.0003	0.9994 ± 0.0003	
None	1.0000 ± 0.0014	0.9996 ± 0.0003	0.9999 ± 0.0003	
Normal U	1.0000 ± 0.0050	0.9948 ± 0.0003	0.9948 ± 0.0003	
Normal U	1.0000 ± 0.0050	0.9946 ± 0.0003	0.9945 ± 0.0003	
Normal U	1.0000 ± 0.0050	0.9993 ± 0.0003	0.9991 ± 0.0003	
Normal U	1.0000 ± 0.0030	0.9970 ± 0.0003	0.9971 ± 0.0003	
Normal U	1.0000 ± 0.0030	1.0014 ± 0.0003	1.0008 ± 0.0003	
Normal U	1.0000 ± 0.0030	1.0018 ± 0.0003	1.0020 ± 0.0003	
Normal U	1.0000 ± 0.0030	1.0024 ± 0.0003	1.0018 ± 0.0003	
Depleted U	0.9989 ± 0.0017	0.9975 ± 0.0003	0.9978 ± 0.0003	

 $\sigma \leq |\Delta k| \leq 2\sigma$

Results for Plutonium Spheres

	Benchmark	MCN	P5 k _{eff}
Reflector	k _{eff}	ENDF/B-VII.1β4	ENDF/B-VII.0
None	1.0000 ± 0.0010	1.0000 ± 0.0003	1.0000 ± 0.0003
None	1.0000 ± 0.0014	1.0000 ± 0.0003	0.9999 ± 0.0003
Normal U	1.0000 ± 0.0030	1.0000 ± 0.0003	0.9995 ± 0.0003
Normal U	1.0000 ± 0.0018	0.9990 ± 0.0003	1.0001 ± 0.0003
Depleted U	0.9993 ± 0.0017	0.9981 ± 0.0003	0.9981 ± 0.0003
Thorium	1.0000 ± 0.0006	0.9978 ± 0.0003	0.9977 ± 0.0003

$|\Delta k| > 3\sigma$

For the last case (Thor), less than 6% of the fissions occur in the thorium reflector

Results for ²³³U Spheres

	Benchmark	MCN	P5 k _{eff}
Reflector	k _{eff}	ENDF/B-VII.1β4	ENDF/B-VII.0
None	1.0000 ± 0.0010	0.9998 ± 0.0003	0.9995 ± 0.0003
HEU	1.0000 ± 0.0010	0.9988 ± 0.0003	0.9990 ± 0.0003
HEU	1.0000 ± 0.0011	1.0005 ± 0.0003	1.0006 ± 0.0003
Normal U	1.0000 ± 0.0010	0.9992 ± 0.0003	0.9996 ± 0.0003
Normal U	1.0000 ± 0.0010	0.9997 ± 0.0003	1.0001 ± 0.0003
Normal U	1.0000 ± 0.0014	0.9985 ± 0.0003	0.9995 ± 0.0003

 $\sigma < |\Delta k| \le 2\sigma$

Results for Metal Spheres Reflected by Tungsten or Tungsten Carbide

	Fuel	Reflector	Depekment	MCNI	P5 k _{eff}
Fuel	(cm)	(cm)	Benchmark k _{eff}	ENDF/B-VII.1β4	ENDF/B-VII.0
²³³ U	5.0444	2.4384	1.0000 ± 0.0007	0.9984 ± 0.0003	1.0049 ± 0.0003
²³³ U	4.5999	5.7912	1.0000 ± 0.0008	0.9955 ± 0.0003	1.0052 ± 0.0003
HEU	6.6020	4.8260*	1.0000 ± 0.0050	1.0016 ± 0.0003	1.0082 ± 0.0003
HEU	6.2527	7.3660*	1.0000 ± 0.0050	1.0014 ± 0.0003	1.0095 ± 0.0003
HEU	6.0509	11.4300*	1.0000 ± 0.0050	1.0051± 0.0003	1.0129 ± 0.0003
HEU	6.0159	16.5100*	1.0000 ± 0.0050	1.0097 ± 0.0003	1.0166 ± 0.0003
Pu	5.0419	4.6990	1.0000 ± 0.0013	1.0008 ± 0.0003	1.0093 ± 0.0003

* Tungsten carbide reflector

 $\sigma < |\Delta k| \le 2\sigma$ $2\sigma < |\Delta k| \le 3\sigma$ $3\sigma < |\Delta k|$

Results for Metal Spheres Reflected by Beryllium or Beryllium Oxide

	Fuel	Reflector	Donobrook	MCN	P5 k _{eff}
Fuel	(cm)	(cm)	Benchmark k _{eff}	ENDF/B-VII.1β4	ENDF/B-VII.0
²³³ U	5.0444	2.0447	1.0000 ± 0.0030	0.9964 ± 0.0003	0.9941 ± 0.0003
²³³ U	4.5999	4.1961	1.0000 ± 0.0030	0.9956 ± 0.0003	0.9924 ± 0.0003
HEU	8.3500	2.6500	0.9992 ± 0.0015	0.9979 ± 0.0003	0.9949 ± 0.0003
HEU	8.3500*	2.6500**	0.9992 ± 0.0015	0.9965 ± 0.0003	0.9955 ± 0.0003
Pu	5.0419	3.6881	1.0000 ± 0.0030	0.9997 ± 0.0003	0.9964 ± 0.0003

* Inner radius 1.4 cm

 $\sigma < |\Delta \mathbf{k}| \le 2\sigma \qquad 2\sigma < |\Delta \mathbf{k}| \le 3\sigma$

** Beryllium oxide reflector

All of these benchmarks are extrapolated from **subcritical** experiments with low multiplication (400 maximum, some less than 100)

Results for Metal Spheres and Cylinders Reflected by Beryllium or Beryllium Oxide

	Fuel Radius / Height	Reflector Radius / Height	Benchmark	MCNI	P5 k _{eff}
Fuel	(cm)	(cm)	k _{eff}	ENDF/B-VII.1β4	ENDF/B-VII.0
Pu	5.9950 / 4.5000	9.9950 / 14.8950	1.0000 ± 0.0026	1.0046 ± 0.0003	1.0031 ± 0.0003
Pu	5.9950 / 4.5000	9.9950 / 14.9400**	1.0000 ± 0.0026	0.9930 ± 0.0003	0.9929 ± 0.0003
Pu	5.3500*	5.6500	0.9992 ± 0.0015	1.0009 ± 0.0003	0.9976 ± 0.0003
Pu	3.7938	8.4938	0.9983 ± 0.0019	1.0000 ± 0.0003	0.9965 ± 0.0003

* Inner radius 1.4 cm

 $\sigma < |\Delta \mathbf{k}| \le 2\sigma$ $2\sigma < |\Delta \mathbf{k}| \le 3\sigma$

** Beryllium oxide reflector

All of these benchmarks are based on critical experiments

Results for Water-Moderated LWBR SB Cores

			Benchmark	MCNI	⊃5 k _{eff}
Case	Fuel	Lattice	k _{eff}	ENDF/B-VII.1β4	ENDF/B-VII.0
SB-1	²³⁵ UO ₂ -ZrO ₂	Rect	1.0006 ± 0.0027	0.9995 ± 0.0004	1.0017 ± 0.0004
SB-5	²³⁵ UO ₂ -ZrO ₂	Hex	1.0015 ± 0.0028	0.9986 ± 0.0004	0.9999 ± 0.0004
SB-2	²³³ UO ₂ -ZrO ₂	Rect	1.0015 ± 0.0025	1.0021 ± 0.0005	1.0043 ± 0.0005
SB-21/2	²³³ UO ₂ -ZrO ₂	Rect	1.0000 ± 0.0024	1.0019 ± 0.0005	1.0044 ± 0.0005
SB-6	²³³ UO ₂ -ZrO ₂	Hex	0.9995 ± 0.0027	1.0018 ± 0.0004	1.0032 ± 0.0004

$\sigma < |\Delta k| \le 2\sigma$

All cores except SB-2½ are surrounded by a blanket of ThO₂ pins in water

The SB-2¹/₂ core is surrounded by a water reflector

Improvement is due to changes in zirconium data in going from ENDF/B-VII.1β3 to ENDF/B-VII.1β4

Simplified Diagram of the Experiments with HEU Solutions Containing Cadmium

Results for HEU Solutions with Cadmium (Smaller Vessel)

	In-Vessel	Depekment	Calcula	ated k _{eff}
Case	(mg/g)	k _{eff}	ENDF/B-VII.1β4	ENDF/B-VII.0
1	0	1.0012 ± 0.0026	0.9989 ± 0.0004	0.9997 ± 0.0004
2*	0	1.0012 ± 0.0029	0.9908 ± 0.0004	0.9897 ± 0.0004
3	1.208	1.0012 ± 0.0026	0.9981 ± 0.0004	0.9957 ± 0.0004
4	2.393	1.0012 ± 0.0025	0.9996 ± 0.0004	0.9955 ± 0.0004
5	3.897	1.0012 ± 0.0025	1.0029 ± 0.0004	0.9974 ± 0.0004
6	4.069	1.0012 ± 0.0025	1.0047 ± 0.0004	0.9998 ± 0.0004
7	4.196	1.0012 ± 0.0024	1.0051 ± 0.0004	0.9995 ± 0.0004
8	4.271	1.0012 ± 0.0024	1.0041 ± 0.0004	0.9983 ± 0.0004

* Reflector contains Cd

 $\sigma < |\Delta k| \le 2\sigma$ $2\sigma < |\Delta k| \le 3\sigma$ $3\sigma < |\Delta k|$

Results for HEU Solutions with Cadmium (Larger Vessel)

	In-Vessel	Depekment	Calcula	ated k _{eff}
Case	(mg/g)	k _{eff}	ENDF/B-VII.1β4	ENDF/B-VII.0
9	0	1.0012 ± 0.0020	0.9976 ± 0.0004	0.9980 ± 0.0004
10*	0	1.0012 ± 0.0024	0.9894 ± 0.0004	0.9892 ± 0.0004
11*	1.240	1.0012 ± 0.0022	0.9919 ± 0.0004	0.9895 ± 0.0004
12*	2.250	1.0012 ± 0.0021	0.9957 ± 0.0004	0.9920 ± 0.0004
13*	3.362	1.0012 ± 0.0021	1.0072 ± 0.0004	0.9915 ± 0.0004
14*	4.189	1.0012 ± 0.0020	1.0082 ± 0.0004	0.9919 ± 0.0004
15*	4.577	1.0012 ± 0.0021	1.0002 ± 0.0004	0.9943 ± 0.0004
16*	4.897	1.0012 ± 0.0020	0.9993 ± 0.0004	0.9920 ± 0.0004
17*	5.047	1.0012 ± 0.0021	0.9977 ± 0.0004	0.9909 ± 0.0004
18	5.032	1.0012 ± 0.0020	0.9995 ± 0.0004	0.9933 ± 0.0004
19	5.937	1.0012 ± 0.0020	1.0006 ± 0.0004	0.9936 ± 0.0004
20	6.626	1.0012 ± 0.0019	0.9989 ± 0.0004	0.9913 ± 0.0004

* Reflector contains Cd $\sigma < |\Delta k| \le 2\sigma$ $2\sigma < |\Delta k| \le 3\sigma$ $3\sigma < |\Delta k|$

Results for Water-Reflected Plutonium-Nitrate Solutions (42.9 wt.% ²⁴⁰Pu, 1.08 wt.% ²⁴¹Am, 0.0089 wt.% Gd)

Pu Conc	Benchmark	MCN	٨k	
(g/liter)	k _{eff}	ENDF/B-VII.1β4	ENDF/B-VII.0	VII.1β4 - VII.0
140.0	1.0000 ± 0.0034	1.0089 ± 0.0004	1.0089 ± 0.0004	0 ± 0.0006
116.0	1.0000 ± 0.0034	1.0116 ± 0.0004	1.0124 ± 0.0004	0008 ± 0.0006
99.3	1.0000 ± 0.0032	1.0098 ± 0.0004	1.0098 ± 0.0004	0 ± 0.0006
85.5	1.0000 ± 0.0030	1.0081 ± 0.0004	1.0083 ± 0.0004	0002 ± 0.0006
75.6	1.0000 ± 0.0030	1.0074 ± 0.0004	1.0077 ± 0.0004	0003 ± 0.0006
65.1	1.0000 ± 0.0031	1.0053 ± 0.0004	1.0058 ± 0.0004	0005 ± 0.0006
56.3	1.0000 ± 0.0032	1.0043 ± 0.0004	1.0048 ± 0.0004	0005 ± 0.0006
46.8	1.0000 ± 0.0033	1.0041 ± 0.0004	1.0043 ± 0.0004	0002 ± 0.0006
40.6	1.0000 ± 0.0034	1.0026 ± 0.0003	1.0030 ± 0.0003	0004 ± 0.0004

 $\sigma < |\Delta k| \le 2\sigma \qquad 2\sigma < |\Delta k| \le 3\sigma \qquad 3\sigma < |\Delta k| \qquad \sigma < |\Delta k|$

Change in ¹⁵⁷Gd data slightly reduces the calculated k_{eff} for ENDF/B-VII.1 β 4

Results for Spheres Reflected by Graphite

	Fuel	Reflector			
Fuel	(cm)	(cm)	Benchmark	ENDF/B-VII.1β4	ENDF/B-VII.0
HEU	9.15*	3.45	1.0000 ± 0.0028	1.0075 ± 0.0003	1.0072 ± 0.0003
IEU	14.00**	3.20	1.0000 ± 0.0030	1.0073 ± 0.0003	1.0075 ± 0.0003
Pu	6.00***	5.65	1.0000 ± 0.0020	0.9999 ± 0.0003	0.9998 ± 0.0003

* Inner radius 4.029 cm
** Inner radius 2.788 cm
*** Inner radius 1.715 cm

 $2\sigma \leq |\Delta k| \leq 3\sigma$

Results for HEU Sphere Reflected by Nickel

Fuel	Reflector	k _{eff}			
(cm)	(cm)	Benchmark	ENDF/B-VII.1β4	ENDF/B-VII.0	
6.46	26.78	1.0000 ± 0.0030	1.0084 ± 0.0003	1.0083 ± 0.0003	

 $2\sigma < |\Delta k| \le 3\sigma$

Reactivity Biases for Plutonium Solution Benchmarks

Configuration for the Zeus Benchmarks

Results for the Zeus Graphite Benchmarks

Results for the Fast Zeus Benchmarks

		MCNP5 k _{eff}				
Moderator	Benchmark k _{eff}	ENDF/B-VII.1β4 + ENDF/B-V Cu	ENDF/B-VII.1β4	ENDF/B-VII.0		
Steel	0.9991 ± 0.0024	0.9998 ± 0.0003	1.0091 ± 0.0003	1.0090 ± 0.0003		
None	1.0004 ± 0.0016	1.0000 ± 0.0003	1.0115 ± 0.0003	1.0115 ± 0.0003		

 $4\sigma < |\Delta k| \le 5\sigma$ $6\sigma < |\Delta k| \le 7\sigma$

ENDF/B-VII.1β4 data for copper are unchanged from the ENDF/B-VII.0 data

Replacing ENDF/B-VII copper data with ENDF/B-V data produces excellent agreement with benchmark values

Transmission Measurements for ⁶³Cu at GELINA

K. Guber, L. Leal, C. Lampoudis, S. Kopecky, P. Schillebeeckx, F. Emiliani, R. Wynants, and P. Siegler, "New Improved Nuclear Data for Nuclear Criticality and Safety," *Proceedings of the International Conference on Nuclear Criticality 2011*, Edinburgh, Scotland (September 19-22, 2011).

Results for Neptunium Sphere Reflected by HEU

k _{eff}						
Benchmark	ENDF/B-VII.1β4	ENDF/B-VII.0				
1.0019 0.0036	0.9948 ± 0.0003	0.9955 ± 0.0003				

 $\sigma < |\Delta \mathbf{k}| \le 2\sigma$

Only about 1 fission in 8 occurs in ²³⁷Np

Rossi α

Rossi α is the rate of change of the population of prompt neutrons that cause fission:

 $\phi_{pf}(t) = \phi_{pf0} \exp(\alpha_R t)$

$$\alpha_{\rm R} \cong -\beta / \Lambda_{\rm pf}$$

MCNP5 1.60 includes a new capability (kopts) to calculate adjointweighted values for β and Λ_{pf} and therefore for Rossi α as well

Historically, Rossi α has been measured principally at LANL, ANL West, and the Japan Atomic Energy Agency

Measured values reported herein are for the delayed critical condition

Rossi α Validation Suite

Name	Fuel	Spectrum	Geometry	Moderator	Reflector
Godiva	HEU	Fast	Spherical	None	None
Flattop-25	HEU	Fast	Spherical	None	Normal Uranium
Zeus-5	HEU	Fast	Cylindrical	None	Copper
Zeus-6	HEU	Fast	Cylindrical	Steel	Copper
Zeus-1	HEU	Intermediate	Cylindrical	Graphite	Copper
Big Ten	IEU	Fast	Cylindrical	None	Depleted Uranium
STACY-30	IEU	Thermal	Cylindrical	Water	None
STACY-46	IEU	Thermal	Cylindrical	Water	Water
Jezebel-233	²³³ U	Fast	Spherical	None	None
Flattop-23	²³³ U	Fast	Spherical	None	Normal Uranium
Jezebel	Pu	Fast	Spherical	None	None
Flattop-Pu	Pu	Fast	Spherical	None	Normal Uranium
Thor	Pu	Fast	Mixed	None	Thorium

Rossi α Results for HEU and IEU Cases

	Spec-	Moder-		Rossi α (10 ⁴ generations/second)		
Fuel	trum	ator	Reflector	Measured	E-VII.1β4	E-VII.0
HEU	Fast	None	None	-111 ± 2	-113 ± 2	-113 ± 1
HEU	Fast	None	Normal U	-38.2 ± 0.2	-39.8 ± 0.1	-39.7 ± 0.2
HEU	Fast	None	Copper	-79.6 ± 0.8	-108.3 ± 0.3	-107.6 ± 0.8
HEU	Fast	Steel	Copper	-37.3 ± 0.5	-41.7 ± 0.3	-41.4 ± 0.3
HEU	Intermed	Graphite	Copper	-3.38 ± 0.08	-3.60 ± 0.02	-3.63 ± 0.02
IEU	Fast	None	Depl U	-11.7 ± 0.1	-11.7 ± 0.1	-11.8 ± 0.1
IEU	Thermal	Water	None	-0.127 ± 0.003	-0.124 ± 0.003	-0.133 ± 0.003
IEU	Thermal	Water	Water	-0.106 ± 0.004	-0.108 ± 0.003	-0.104 ± 0.002

Input specifications are taken from the International Handbook of Evaluated Criticality Safety Benchmark Experiments

Agreement is reasonable except for the unmoderated Zeus case

Rossi α Results for ²³³U and Plutonium Cases

			Rossi α (10 ⁴ generations/second)			
Fuel	Spectrum	Reflector	Measured	ENDF/B-VII.1β4	ENDF/B-VII.0	
²³³ U	Fast	None	-100 ± 1	-105 ± 1	-108 ± 1	
²³³ U	Fast	Normal U	-26.7 ± 0.5	-29.3 ± 0.4	-30.2 ± 0.4	
Pu	Fast	None	-64 ± 1	-64 ± 1	-65 ± 1	
Pu	Fast	Normal U	-0.21.4 ± 0.5	-20.9 ± 0.3	-21.0 ± 0.3	
Pu	Fast	Thorium	-19 ± 1	-21 ± 1	-20 ± 1	

Input specifications are taken from the International Handbook of Evaluated Criticality Safety Benchmark Experiments

ENDF/B-VII.1β4 produces slightly improved results for ²³³U cases but statistically insignificant changes for plutonium cases

Summary and Conclusions

For most criticality benchmarks, ENDF/B-VII.1β4 produces results that are in very close agreement with results from ENDF/B-VII.0

ENDF/B-VII.1β4 produces significantly improved results for most cases with tungsten, beryllium, cadmium, or zirconium

However, further improvement is needed for cases with beryllium

Unfortunately, a number of previously identified problems still remain, including

- Unresolved resonance range for ²³⁵U
- Thermal range for ²³⁹Pu
- Fast range for ²³²Th
- Fast range for ²³⁷Np
- Fast range for copper

Summary and Conclusions (Continued)

ENDF/B-VII.1 β 4 and ENDF/B-VII.0 produce similar results for Rossi α that, except for the unmoderated Zeus case, are in reasonable agreement with measured values

Overall, ENDF/B-VII.1β4 can be expected to produce criticality results that are as good as those from ENDF/B-VII.0 and to produce better results for most cases with tungsten, cadmium, zirconium, or beryllium

