First results on assimilation of major actinides

M. Herman, S. Hoblit, G. Nobre, A. Palumbo National Nuclear Data Center **Brookhaven National Laboratory**

> G. Palmiotti, H. Hiruta Idaho National Laboratory

Nuclear Data Week, Nov. 14-18, 2011

a passion for discovery

Office of

Assimilation Linking integral experiments with reaction model parameters

²³⁵U assimilation starting point (prior)

EMPIRE calculations

- EGSM lev. den.
- Cross Section (barns) CC with RIPL #2408 4 coll. lev. & 76 in continuum
- Exciton model
- E1 strength MLO1 •
- OM for fission
- Fission barriers RIPL1
- Roughly adjusted parameters but **no** energydependent tuning!
- PFNS and nu-bars from VII.1
 - Input to INL
 - central values in 33 energy groups
 - group-wise sensitivity matrices for 50 parameters (no PFNS & nu-bars!)
 - parameter covariance matrix

Performance of the prior file

k_{eff} results (experimental k_{eff} =1.0 (±100~300pcm))

Experiment	EMPIRE (±pcm)	ENDF/B-VII.0 (±pcm)
JEZEBEL-239	0.98567 (±8)	0.99986 (±9)
GODIVA	0.99072 (±9)	0.99983 (±9)
FLATTOP-Pu	0.98838 (±18)	1.00097 (±18)
FLATTOP-25	1.00182 (±17)	1.00217(±17)

C/E ratio of spectral indices at the center of JEZEBEL-239 and GODIVA

	JEZEBEL-239		GODIVA	
	EMPIRE	ENDF/B-VII.0	EMPIRE	ENDF/B-VII.0
$\sigma_{\rm f}(^{238}{\rm U})/\sigma_{\rm f}(^{235}{\rm U})$	0.956±0.009	0.974±0.009	1.053 ± 0.013	0.954±0.012
$\sigma_{\rm f}(^{233}{\rm U})/\sigma_{\rm f}(^{235}{\rm U})$	1.000 ± 0.017	0.986±0.017	0.996±0.019	0.987±0.019
$\sigma_{f}(^{237}Np)/\sigma_{f}(^{235}U)$	0.999±0.017	1.009 ± 0.017	1.070±0.017	0.990±0.016
$\sigma_{f}(^{239}Pu)/\sigma_{f}(^{235}U)$	0.971±0.020	0.984±0.020	0.992±0.018	0.986±0.018
		1	1	BDOOKURAIEN

Brookhaven Science Associates

Assimilation of the ²³⁵U data

C/E for GODIVA

Experiment	old C/E $\pm \sigma$	new C/E ± σ
K _{eff}	0.9907 ± 0.002	1.0010±0.002
Fis. ²³⁸ U/Fis. ²³⁵ U	1.0527 ± 0.013	1.0357 ± 0.004
Fis. ²³⁹ Pu/Fis. ²³⁵ U	0.9917 ± 0.018	0.9771 ± 0.003
Fis. ²³⁷ Np/Fis. ²³⁵ U	1.0703 ± 0.017	1.0536 ± 0.003
Fis. ²³³ U/Fis. ²³⁵ U	0.9964 ± 0.019	0.9820± 0.004

a) Factor multiplying the reaction (fusion, absorption, compound nucleus formation) cross section,

- ^{b)} Factor multiplying total cross section,
- ^{c)} Asymptotic level density parameter in Compound Nucleus, ^{d)} Pairing energy in the level densities at the saddle point in Compound Nucleus (first chance fission),
 ^{e)} Hight of the second hump in the fission barrier in Compound Nucleus, ^{f)} Real depth of the Optical Model potential for n + target, ^{g)} Surface imaginary Optical

Parameter variations and standard deviations obtained by data assimilation

Parameter	Variation (%)	Init. Stand. Dev. (%)	Final Stand. Dev. (%)
FUSRED ^{a)}	1.402	1.257	0.878
TOTRED ^{b)}	0.461	0.966	0.917
ATILNO ^{c)}	-0.236	0.950	0.946
DELTAF d)	-0.025	0.649	0.621
VB0 ^{e)}	-0.006	0.133	0.118
UOMPVV101 f)	0.033	0.116	0.116
UOMPRS101 g)	0.072	0.834	0.834
UOMPWS101 h)	-0.110	2.023	2.022
TUNE000000 i)	-0.099	1.908	1.908

Model potential radius for n + target, ^{h)} Surface imaginary Optical Model potential depth for n + target,

ⁱ⁾ Factor on the gamma emission width in Compound Nucleus (scales capture). Brookhaven Science Associates

Verification - EMPIRE/MCNP calculations using posterior parameters

k_{eff} C/E for GODIVA

	prior C/E ± σ	posterior C/E ± σ
INL	0.9907 ± 0.002	1.0010± 0.002
BNL	0.98418 ± 0.00008	0.99526 ± 0.00008

INL and BNL calculations show ~1000 pcm improvement in spite of the difference in the starting values.

Verification - EMPIRE/MCNP calculations using posterior parameters

keff C/E for GODIVA

	prior C/E ± σ	posterior C/E ± σ
INL	0.9907 ± 0.002	1.0010± 0.002
BNL	0.98418 ± 0.00008	0.99526 ± 0.00008

INL and BNL calculations show ~1000 pcm improvement in spite of the difference in the starting values.

Verification - EMPIRE/MCNP calculations using posterior parameters

Further developments

- Better 'a priori' calculations
- Developing PFNS capabilities in EMPIRE
- Allowing variations of PFNS and nu-bars
- Allowing variations of resonance parameters
- Including more integral experiments

Requisites for assimilation

- Adequate set of reaction models
- Entire evaluation expressed in terms of model parameters
- Reaction model and its parameterization flexible enough to reproduce differential and integral data
- Clean, well defined, integral experiments predominantly sensitive to a single material.

Conclusions

- Assimilation is feasible!
- Very small changes in cross sections can be enough to fix k_{eff}
- Pretty 'bad' cross sections can still produce reasonable k_{eff}, i.e., integral data should not overwrite differential data, lot of space for error compensation
- Non-linearity must be kept under control
- Advantages of consistent assimilation over Total MC
 - provides better insight into physics (sensitivities)
 - does not make 'unnecessary violence' to the parameters
 - calculation time can be used for multi-material and multi-experiment adjustment
- Total MC advantages
 - not affected by non-linearity issues
 - can be used to find other local minima

