Calculation of Integral Quantities with ENDF/B-VII.1 Evaluated Neutron Library

Boris Pritychenko National Nuclear Data Center Brookhaven National Laboratory Upton, NY 11973-5000, USA

a passion for discovery

Status of Previous Work

 ENDF/B-VII.0, JEFF-3.1, JENDL-3.3 & ENDF/B-VI.8 MACS and reaction rates have been calculated, providing a complimentary source of σ(n,γ) for *s*-process, ADNDT 96, 645 (2010)

$$\sigma^{Maxw}(kT) = \frac{2}{\sqrt{\pi}} \frac{a^2}{(kT)^2} \int_0^\infty \sigma(E_n^L) E_n^L e^{-\frac{aE_n^L}{kT}} dE_n^L$$

- Atlas of Neutron Resonances & KADONIS were used to identify ENDF library deficiencies
- No Maxwellian-averaged Cross Section (MACS) Uncertainties

ENDF/B-VII.1 Maxwellian-averaged Cross Sections

- ENDF/B-VII.1 σ Φ δσ(n,γ) were calculated
- KADONIS was used by CSEWG collaboration to improve ENDF
- Improvements for: ³He, ⁹Be,C-0/¹²C, ¹⁶O, ⁵⁸Co, . Nd region
- Theoretical values were adopted for ³⁸Ar, ⁸²Se, ^{115m}Cd, ¹⁴¹Ce, ¹⁴³Pr and ^{148m,149}Pm
- MACS & Uncertainties would be published in ENDF/B-VII.1 paper

gadolinium isotopes," PhD dissertation, North Carolina State University (2010).
[286] R. Bahran, Y. Danon, M. Rapp, D. Williams, D. Barry, G. Leinweber, R. Block, J. Hoole, "A New High Resolution Neutron Transmission Detector at the RPI Gaerttner LINAC Laboratory", Submitted Proceedings of the Tenth International Topical Meeting on Nuclear Applications of Accelerators (AccApp 2011), Knoxville, TN, (2011). [287] M. Herman, "Summary Document (Minutes) Presentations & Reports, CSEWG 2010". Available online http://www.nndc.bnl.gov/meetings/csewg2010.

APPENDIX A: MAXWELLIAN-AVERAGED 30-KEV CAPTURE

TABLE XLI: Maxwellian-averaged cross sections from ENDF/B-VII.0 [J], ENDF/B-VII.1, KADONIS [36] and their ratios at kT=30 keV (Ccalculated from BNL-325 data [133], T-theoretical data in KADONIS).

Material	VII.0 (barns)	VII.1 (barns)	KADoNiS (barns)	VII.0/VII.1	KADoNiS/VII.1
1-H - 1 1-H - 2	1.525E-4 1.998E-6	$\substack{1.525 \text{E-}4 \pm 5.853 \text{E-}6 \\ 1.998 \text{E-}6 \pm 1.265 \text{E-}7}$	$\substack{2.540\text{E-}4\pm2.000\text{E-}5\\3.000\text{E-}6\pm2.000\text{E-}7}$	1.000E+0 1.000E+0	$\substack{1.666E+0\pm1.311E-1\\1.502E+0\pm1.001E-1}$
2-He- 3	2.455E-8	2.126E-5	$7.600\text{E-}6{\pm}6.000\text{E-}7$	1.155E-3	$3.575\text{E-}1{\pm}2.822\text{E-}2$
2-116-4 3-Li-6 3-Li-7 4-Bo-7	3.275E-5 4.645E-5	$\substack{3.276 \text{E-} 5 \pm 3.181 \text{E-} 6 \\ 4.645 \text{E-} 5 \pm 2.103 \text{E-} 5}$	4.200E-5±3.000E-6	9.997E-1 1.000E+0	$9.042E-1\pm6.459E-2$
4-Be- 9 5-B - 10 5-B - 11	1.128E-4 4.299E-4 6.575E-5	$9.298E-6\pm 1.860E-6$ $4.299E-4\pm 1.720E-4$ $6.575E-5\pm 2.026E-5$	$1.040E-5\pm1.600E-6$	1.213E+1 1.000E+0 1.000E+0	$1.119E+0\pm1.721E-1$
6-C-0/6-C-12	1.344E-6	1.623E-5±3.243E-6	1.540E-5±1.000E-6	8.281E-2	9.489E-1±6.161E-2
7-N - 14 7-N - 15 8-O - 16	6.682E-5 9.191E-6 1.692E-7	6.683E-5 9.190E-6±4.595E-6 3.154E-5±3.154E-6 4.708E 6	$4.100E-5\pm6.000E-5^{-5}$ $5.800E-6\pm6.000E-7$ $3.800E-5\pm4.000E-6$	9.999E-1 1.000E+0 5.365E-3 0.008E-1	$6.135E-1\pm 8.978E-1$ $6.311E-1\pm 6.529E-2$ $1.205E+0\pm 1.268E-1$
9-F - 19 11-Na- 22	4.362E-3 8.011E-3	4.511E-3 8.011E-3	$3.200\text{E-}3{\pm}1.000\text{E-}4$	9.670E-1 1.000E+0	$7.094\text{E-}1{\pm}2.217\text{E-}2$
11-Na- 23	1.829E-3	1.829E-3	$2.100E-3\pm 2.000E-4$	1.000E+0	1.148E+0±1.093E-1
12-Mg- 24	3.793E-3	3.793E-3+7.168E-4	$3.300E-3\pm 4.000E-4$	1.000E+0	8.700E-1+1.055E-1
12-Mg- 25	5.279E-3	5.279E-3±1.732E-3	6.400E-3±4.000E-4	1.000E+0	1.212E+0±7.577E-2
12-Mg- 26	8.645E-5	8.645E-5±1.625E-5	1.260E-4+9.000E-6	1.000E+0	1.457E+0±1.041E-1
13-Al- 27	3.303E-3	3.303E-3±5.615E-4	3.740E-3±3.000E-4	1.000E+0	1.132E+0±9.083E-2
14-Si- 28	3.608E-3	3.608E-3±7.998E-4	1.420E-3±1.300E-4	1.000E+0	3.936E-1+3.603E-2
14-Si- 29	7.755E-3	7.755E-3±8.328E-4	6.580E-3±6.600E-4	1.000E+0	8.485E-1±8.511E-2
14-Si- 30	4.432E-3	4.432E-3±1.514E-3	1.820E-3±3.300E-4	1.000E+0	4.106E-1±7.446E-2
15-P - 31	7.237E-3	7.238E_3	$1.740E_{-3\pm9.000E_{-5}}$	9.999E-1	$2.404E_{-1\pm1.243E_{-2}}$
16-S - 32	5.658E-3	5.658E_3	$4.100E_{-3\pm2.000E_{-4}}$	1.000E+0	7.246E_1 $\pm 3.535E_{-2}$
16-S - 33	2.274E-3	2.274E-3	$7.400E-3\pm1.500E-3$	1.000E+0	$3.254E+0\pm 6.596E-1$
16-S - 34	2.330E-4	2.330E-4	$2.260E-4\pm1.000E-5$	1.000E+0	$9.700E-1\pm 4.292E-2$
16-S - 36	6.326E-4	6.327E-4	$1.710E-4\pm1.400E-5$	9.998E-1	2.703E-1±2.213E-2
17-Cl- 35	7.534E-3	7.529E-3	$9.680E-3\pm2.100E-4$	1.001E+0	1.286E+0±2.789E-2
17-Cl- 37	2.057E-3	2.041E-3	$2.120E-3\pm7.000E-5$	1.008E+0	1.039E+0±3.430E-2
18-Ar- 36	8.838E-3	8.838E-3	$9.000E-3\pm1.500E-3^T_T$	1.000E + 0	$1.018E + 0 \pm 1.697E - 1$
18-Ar- 38	1.369E-4	1.369E-4	$3.000E-3\pm3.000E-4^{T}$	1.000E+0	2.191E+1±2.191E+0
18-Ar- 40	2.249E-3	2.249E-3	$2.540E-3\pm1.000E-4$	1.000E+0	1.129E+0±4.446E-2
19-K - 39	1.848E-2	1.056E-2	$1.180E-2\pm4.000E-4$	1.750E+0	1.117E+0±3.788E-2
19-K - 40	1.939E-2	1.939E-2	$3.100E-2\pm7.000E-3^T$	1.000E+0	1.599E+0±3.610E-1
19-K - 41	3.136E-2	2.029E-2	$2.200E-2\pm7.000E-4$	1.546E+0	1.084E+0±3.450E-2
20-Ca- 40	5.142E-3	5.142E-3	$5.730E-3\pm3.400E-4$	1.000E+0	1.114E+0±6.612E-2

MACS Uncertainties, kT=30 keV

- Uncertainties constrain nucleosynthesis models
- ENDF/B-VII.1, priority materials for nuclear industry, minor actinides lack data
- Low-fidelity (2008), complete ENDF/B-VII.0
- KADoNiS, experimental, s-process

EN

ORY

Thermal Cross Sections

- ENDF/B-VII.1 β3 MT=102 (n,γ),18 (n,F)
- Several data outliers in this case could be traced to the lack of measurements and incomplete overlap of experimental and theoretical data for ¹⁷O,¹⁰³Ru,^{166m}Ho and ⁴⁶Ca, ⁵⁸Co,¹³⁵Cs, ²⁰⁴Hg, respectively
- Outliers often indicate updates due to new data
- Zr-95 in beta5

Resonance Integrals

- RI = $\int \sigma(E)/E dE$
- ENDF/B-VII.1 β3 MT=102 (n,γ),18 (n,F)
- ¹⁶O,⁵⁸Co are fixed in β 4
- Resonance integrals for neutron capture and fission were calculated for 0.5 eV -20 MeV incident neutron energy range
- Fission or Actinide region differences are due to adoption of Actinoid file from JENDL-4

Westcott g-Factors

- WF = $\sigma_{Maxw}/\sigma_{Therm}$
- WF==1 if σ~1/v
- ENDF/B-VII.1 β3 MT=102 (n,γ)
- In ENDF/B-VII.1 library Westcott factors evolved from 3.997 to 0.989 and from 1.002 to 1.711 for ²³⁹U and ¹⁷⁶Lu, respectively.
 ¹⁷⁶Lu agrees with the recommended value of 1.75.

Conclusion & Outlook

- Thermal & Maxwellian Cross sections, Resonance Integrals and Westcott factors are produced for ENDF/B-VII.1 release
- Several ENDF deficiencies were identified and fixes are implemented
- ENDF/B-VII.1 MACS and their uncertainties are calculated and will be publicly released in December 2011
- Exchange of ideas between CSEWG and nuclear astrophysics communities
- Many thanks to M.W. Herman, M.B. Chadwick, S.F. Mughabghab and the CSEWG collaboration for help and support

s-proces Nucleosynthesis

- s-process path agrees well with ENDF neutron evaluations
- Equilibrium conditions can be observed along valley of stability:

