Further test of internal-conversion theory with a measurement in ^{119m}Sn

TEXAS A&M PROGRAM TO MEASURE ICC N. NICA

Internal Conversion Coefficients (ICC):

- Big impact on quality of nuclear science
- Central for USNDP and other nuclear data programs
- Intensely studied by theory and experiment
- Important result: hole calculation now standard
- Still to measure critical cases!!!

2002RA45 survey ICC's theories and measurements

• Theory: RHFS and RDF comparison

Exchange interaction, Finite size of nucleus, Hole treatment

• Experiment:

100 E2, M3, E3, M4, E5 ICC values, 0.5%-6% precision, very few <1% precision!

• Conclusions, Δ(exp:theory)%:

No hole:+0.19(26)% BEST!(bound and continuum states - SCF of neutral atom)Hole-SCF:-0.94(24)%(continuum - SCF of ion + hole (full relaxation of ion orbitals))Hole-FO:-1.18(24)%(continuum - ion field from bound wave functions ofneutral atom

(no relaxation of ion

orbitals))

PHYSICAL ARGUMENTK-shell filling time vs. time to leave atom $\sim 10^{-15} - 10^{-17} \, \text{s} \gg \sim 10^{-18} \, \text{s}$

Texas A&M precision ICC measurements:

• KX to γ rays ratio method

$$\alpha_{K}\omega_{K} = \frac{N_{K}}{N_{\gamma}} \cdot \frac{\varepsilon_{\gamma}}{\varepsilon_{K}}$$

• N_K , N_γ measured from only one K-shell converted transition • ω_K from 1999SCZX (compilation and fit)

- Very precise detection efficiency for ORTEC γ-X 280-cm³ coaxial HPGe at standard distance of 151 mm:
 - 0.2%, 50-1400 keV (2002HA61, 2003HE28)
 - 0.4%, 1.4-3.5 MeV (2004HE34)
 - 0.7%, 10-50 keV (KX rays domain)

DETECTOR EFFICIENCY 50 keV < E_{γ} < 1.4 MeV

Coaxial 280-cc n-type Ge detector:

- Measured absolute efficiency (⁶⁰Co source from PTB with activity known to + 0.1%)
- Measured relative efficiency (9 sources)
- Calculated efficiencies with Monte Carlo (Integrated Tiger Series - CYLTRAN code)

KX to γ rays ratio method

- o Sources for n_{th} activation
 - Small selfabsorption (< 0.1%)</p>
 - Dead time (< 5%)</p>
 - Statistics (> 10⁶ for γ or x-rays)
 - High spectrum purity
 - Minimize activation time (0.5 h)

o Impurity analysis - essentially based on ENSDF

- Trace and correct impurity to 0.01% level
- Use decay-curve analysis
- Especially important for the K X-ray region
- **Voigt-shape (Lorentzian) correction for X-rays**
 - Done by simulation spectra, analyzed as the real spectra
- **o** Coincidence summing correction

^{119m}Sn 65.7 keV, M4 transition

- α(K)exp = 1610 82 (1975AB03)
- $\alpha(K)_{no_{hole}} = 1544, \alpha(K)_{hole_{FO}} = 1618$

¹¹⁹Sn IT Decay 1968Bo09

Decay Scheme

Intensities: I(γ+ce) per 100 parent decays %IT=100

^{119m}Sn 65.7 keV, M4 transition - $\alpha_{\rm K}$ measurement

- ¹¹⁸Sn 98.8% enriched (from 24% natural abundance)
- Difficult to roll to get small thickeness
- Samples: 1 cm² x 6.8 µm
- Neutron activation at Triga reactor @ TAMU,
 - $\Phi = 7.5 \text{ x } 10^{12} \text{ n/(cm}^2 \text{s})$
 - $\alpha_{th} = 10$ mb => very long activation times
 - Sample 1: 16 h (used to tune the real run)
 - Sample 2: 120 h (sample got corroded and stuck)
- First major difficulty: very low intensity of 65.7γ
 - very low counting rate 0.06 s⁻¹
 - Pb shielding of HPGe detector & low bgd room
 - Found 33.6% (!) impurities (⁷⁵Se, ¹⁸²Ta)

^{119m}Sn 65.7 keV, M4 transition - α_K measurement

- Second major difficulty: & known poorly below 50 keV
 - From ¹³⁹La case: $\varepsilon(34.17 \text{ keV}) = 98.8\%$ of calculation
 - Need special determination of ε for 20-30 keV
 - Measurement of ¹¹⁶In β ⁻ decay for ϵ (SnKX)

¹¹⁶In β^- decay measurement

- 1 mg of 99.98%-enriched ¹¹⁵In (In₂O₃)
- Found small impurity 339γ
- Identified from ^{115m}In T_{1/2}=4.486(4) h
- Populated by (n,n') on ¹¹⁵In
- 3-50% impurity on SnKX rays
- Deduced ε(SnKX) significantly higher than calculated value
- Redo the measurement with precise ¹¹⁵In subtraction
- Scattering!

^{119m}Sn 65.7 keV, M4 transition - $\alpha_{\rm K}$ measurement

- Third major difficulty: scattering affecting SnKx region
 - Rough estimate 2-3% effect or higher
 - Correction to be done mostly by simulation

^{119m}Sn 65.7 keV, M4 transition - $\alpha_{\rm K}$ measurement

Preliminary result !

- Impurities:
 - SnK_{α} + SnK_{β} : 1.3% impurities (In and Sn KX)
 - 65.7γ: 33.6% impurities (⁷⁵Se and ¹⁸²Ta)
 - $\alpha_{\rm K}(\exp) = 1601 \ 39 \ (2.5\%)$
 - α_{K} (hole,FO)= 1618; α_{K} (no-hole)= 1544
 - ...but still to do
 - i. efficiency (+2-3%)
 - ii. scattering (-2%)
 - iii. Voigt (< +1%)