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An Example Situationp

Evaluating B(E2) data for the 0+→ 2+ transitions ofEvaluating B(E2) data for the 0 → 2 transitions of 
even-even nuclei

Two representations of results: lifetime (τ) and B(E2)
Diverse data from several methods and laboratories
Experiments Separated by many years

Previous evaluation for comparison
2001RA27 – S. Raman



The Nature of Uncertainties

Frequently: X σFrequently: X σ
More generally: X (+σ+– σ-)

Can result from experiment: in the B(E2) evaluation, lifetime 
i h i i imeasurements sometimes have asymmetric uncertainties.

Can also come from calculations where the input uncertainty is large
• f(x + σx) ≈ f(x) + df/dx(σx) σf = df/dx(σx) if σx << x
• If σx is large need to go back to definition used above σf+ ≡ f(x + σx) – f(x)
• Similarly for lower uncertainty σf- ≡ f(x) – f(x – σx)

Ways to handle asymmetry:y y y
Symmetrization
Generalize the averaging procedure



Symmetrizationy

Consider quantity X (+σ+ – σ-)q y ( )
Simple method

σsym = ½(σ+ + σ-)
New central Value = ½[(X+ σ+) + (X – σ-)] = X + ½(σ+ – σ-)

Advanced method: G. Audi – NuBase (2003Au02)
Define probability distribution as asymmetric normal distribution withDefine probability distribution as asymmetric normal distribution with 
modal value x=X and standard deviation σ+ for x>X and σ- for x<X
Use variance σsym = (1 – 2/π) (σ+ – σ-)2 + σ+ σ-

Can find m which divides the distribution into equal area use this asCan find m which divides the distribution into equal area, use this as 
the new central value

where σ+ > σ-



Symmetrization Consequencesy q

Both methods shift the central value – that is to say alter the y
original data
Consider the following examples given by Audi

Nuclide Original T½

Simple Method Advanced Method

Result Deviation Result Deviation

76Ni  240+550–190 ms  420 ± 370  75.00% 470 ± 390  95.83%

222U  1.0+1.0–0.4 μs  1.3 ± 0.7  30.00% 1.4 ± 0.7  40.00%

264Hs  327+448–120 μs  490 ± 280  49.85% 540 ± 300  65.14%

266Mt  1.01+0.47–0.24 ms  1.1 ± 0.4  8.91% 1.2 ± 0.4  18.81%



Symmetrization Consequencesy q

Raman symmetrized all his data via the simple y p
method
The result is internal inconstancies within his tables

Example: 124Ce
Single lifetime measurement, τ = 1270 280 ps
Converting to B(E2) gives 3 5 but Raman gives 3 7 sinceConverting to B(E2) gives 3.5, but Raman gives 3.7 since 
the uncertainty would have been asymmetric, 3.50(+99–63)
3.7 as a lifetime is 1200 ps – a difference of 6%

In general, σ+ > σ-

all lifetime measurements will be skewed upwards when 
expressed as B(E2) valuesexpressed as B(E2) values



Generalizing the Averaging Procedureg g g

Weighted averaging can be generalized toWeighted averaging can be generalized to 
handle asymmetric uncertainties

Removes the problems associated with 
symmetrization



Physical Significance of the Resulty g

A measurement represents a physical quantityA measurement represents a physical quantity  
–there is one correct answer

Multiple representations of the same quantityMultiple representations of the same quantity 
should yield the same average

B(E2) and τ represent the same underlyingB(E2) and τ represent the same underlying 
characteristic of a nuclear level
T i d d t t t bTo average a mixed data set one must be 
converted to the other



Example: 20Nep
B(E2) Reference

0.0308(+82-54) 1982SP02
Measured Mean 

Lifetime (ps)
Reference

( ) 1982SP02
0.0439(+146-88) 1975HO15
0.0305(+64-45) 1971HA26
0.0418(+131-80) 1969GR03

Lifetime (ps)

1.14(24) 1982SP02

0.8(2) 1975HO15

1.15(20) 1971HA26 ( ) 1969GR03
0.0281(+109-61) 1969AN08
0.0276(+64-44) 1969TH01
0 0285(+31-25) 1965EV03

( )

0.84(20) 1969GR03

1.25(35) 1969AN08

1.27(24) 1969TH01
0.0285(+31 25) 1965EV03
0.046(+35-14) 1956DE22

0.0322(34) 1977SC36

0 037(3) 1972OL02

1.23(12) 1965EV03

0.76(33) 1956DE22

Measured B(E2) Reference
0.037(3) 1972OL02

0.048(7) 1970NA07

0.047(9) 1960AN07

0 041(10) 1959AL91

0.0322(34) 1977SC36

0.037(3) 1972OL02

0.048(7) 1970NA07
0.041(10) 1959AL910.047(9) 1960AN07

0.041(10) 1959AL91



Example: 20Nep
Lifetime Reference

1.14(24) 1982SP02
Measured Mean 

Lifetime (ps)
Reference

( ) 1982SP02
0.8(2) 1975HO15
1.15(20) 1971HA26
0 84(20) 1969GR03

Lifetime (ps)

1.14(24) 1982SP02

0.8(2) 1975HO15

1.15(20) 1971HA26 0.84(20) 1969GR03
1.25(35) 1969AN08
1.27(24) 1969TH01
1 23(12) 1965EV03

( )

0.84(20) 1969GR03

1.25(35) 1969AN08

1.27(24) 1969TH01
1.23(12) 1965EV03
0.76(33) 1956DE22
1.09(+13-10) 1977SC36
0 948(+84 71) 1972OL02

1.23(12) 1965EV03

0.76(33) 1956DE22

Measured B(E2) Reference
0.948(+84-71) 1972OL02
0.731(+125-93) 1970NA07
0.75(+18-12) 1960AN07
0 86(+28 17) 1959AL91

0.0322(34) 1977SC36

0.037(3) 1972OL02

0.048(7) 1970NA07
0.86(+28-17) 1959AL910.047(9) 1960AN07

0.041(10) 1959AL91



Example: 20Nep

Weighted average of B(E2) values: 0.0333(16) e2b2Weighted average of B(E2) values: 0.0333(16) e b
Weighted average of mean lifetimes: 

0.966(51) ps 0.0363(19) e2b20.966(51) ps 0.0363(19) e b

9% difference between mean values
Larger than uncertainty by a factor of twoLarger than uncertainty by a factor of two



The Origin of the Datag

When all data is from a single experiment one g p
attributes any spread in the measurements to random 
fluctuations

B d ll d b h l di ib iBest modelled by the normal distribution
Hence the fundamental assumption of weighted 
averaging:averaging: 
There exists a single normal distribution which is 

most likely to reproduce the given data set if y p g
random points are chosen from it.



The Origin of the Datag

If the data are diverse perhaps there is a probabilityIf the data are diverse perhaps there is a probability 
distribution which represents the data better since all 
fluctuation may not be random

The Best Representation (or Expected Value) Methodp ( p )



Formulation

Basic assumption:Basic assumption:
A representative probability distribution for 

a set of data can be built from modellinga set  of data can be built from modelling 
each point as a normal distribution

C ll hi di ib i h T l P b b lCall this distribution the Total Probability 
Distribution, G(x)
Use the asymmetric Gaussian to model the 
data points, g(x;μ, σ+, σ-)



The Asymmetric Gaussiany



The Total Probability Distributiony

For a data set, S, with n points, 
S = {μ1(+σ+

1– σ-
1), μ2(+σ+

2– σ-
2), …, μn(+σ+

n– σ-
n)}

G(x) = (1/n)Σg(x; μi, σ+
i, σ-

i)i=1

n



Computing the averagep g g

The mean is defined to be the statistical expected value p
of a discrete variable with probability distribution G(x)

h

Th i t l t i t i t d i i ht d

, where

The internal uncertainty is computed as in weighted 
averaging, the external uncertainty is calculated as the 
variance of the distributionvariance of the distribution



Validation of the Method

Consider a data set with a total probabilityConsider a data set with a total probability 
distribution which resembles a Gaussian

The data is well represented by a normalThe data is well represented by a normal 
distribution, so the assumption of weighted 
averaging is satisfiedg g
The results returned by both Weighted Averaging 
and the Best Representation Method should be p
very similar



Validation of the Method

Data
10 (+2-3)
13 (+3-5)
12 (2)12 (2)

Weighted average: 11.5 (+12-17)

Best Representation: 11 6(+13 20)Best Representation: 11.6(+13-20)

Real Example: 26Si – two data points, in goodReal Example: Si two data points, in good 
agreement, give near perfect normal distribution

Weighted averaging and Best Representation results are 
identical



Comments

Results computed via an interactive computer codeResults computed via an interactive computer code 
written for this method (which also returns the 
weighted average for comparison)
Method handles asymmetric uncertainties

No symmetrisation problem

No assumptions about the data set as a whole
Constructs a probability distribution to give a true 
representation of the inputs

Behaves well under data transformations
M i i h h i l i f h dMaintains the physical meaning of the data



20Ne Revisited

Recall weighted averaging results:Recall weighted averaging results:
Mean of B(E2) values: 0.0333(16) e2b2

Mean of lifetimes: 0.966(51) ps 0.0363(19) e2b2Mean of lifetimes: 0.966(51) ps 0.0363(19) e b
9% difference between results

Best Representation Method results:p
Mean of B(E2) values: 0.0349(68) e2b2

Mean of lifetimes: 0.98(19) ps 0.0358(+86-58) e2b2

2.6% difference between results, agreement well within 
uncertainties



20Ne Revisited

Notice the uncertainties from the Best Representation Method p
are a factor of 4 higher than Weighted Averaging. Why?
Look at the probability distribution

Total Probability Distribution



20Ne Revisited

Notice the uncertainties from the Best Representation Method p
are a factor of 4 higher than Weighted Averaging. Why?
Look at the probability distribution

Weighted Average Distribution

Best Representation Result



Inflated Uncertaintyy

The Best Representation Method returns larger uncertainties p g
than Weighted Averaging in general, however they are not 
always justified
Th b tifi i ll i fl t d b i l d t i t i thThey can be artificially inflated by a single data point since the 
method does in fact represent the data set as a whole
Consider the following example:Co s de t e o ow g e a p e:

Data
Data

25(3)
25(3)
26(4)
24(2)

( )
26(4)
24(2)
25 5(25)

Weighted Average: 24.8(13)
Best Representation: 25.1(15)

Weighted Average: 24.9(13)
Best Representation: 25.4(20)

25.5(25)
25.5(25)
27(10)



Conclusion

The Best Representation Method builds a probability p p y
distribution using the input data to remove the central 
assumption of Weighted Averaging
The mean is the expected value of this total probabilityThe mean is the expected value of this total probability 
distribution and the uncertainty is the variance
The method is aptly named as its results reflect the input data 
well and are reasonably invariant under conversions in mostwell and are reasonably invariant under conversions in most 
cases
It converges with Weighted Averaging in the case where the 
d i l d ib d b l di ib idata is properly described by a normal distribution
It is most effective when all inputs have comparable 
uncertainties


