

Nuclear Astrophysics with Neutrons

Iris Dillmann

Helmholtz Young Investigators Group LISA Universität Giessen and GSI Helmholtzzentrum Darmstadt Germany

GSI

RESEARCH FIELDS

ENERGY

EARTH AND

HEALTH

JUSTUS-LIEBIG

AERONAUTICS, SPACE

KEY TECHNOLOGIES

STRUCTURE OF MATTER

Largest science organisation in Germany Annual budget ~ 3.3 billion € ~30.000 employees 6 Research fields 17 Research centers

~20 Young Investigator Groups/ year
 5 years, budget ~1.25 Mio €
 Research at Helmholtz centers
 Teaching at universities

151 YIG in 9 years, ~25% working in "Structure of Matter"

Overview

- 1. Astrophysical introduction
- 2. "slow neutron capture process"
 - Quasi-stellar neutron distributions
 - Stellar neutron capture database KADoNiS
- 3. "rapid neutron capture process"
 - Production of neutron-rich exotic isotopes
 - $\beta\text{-delayed}$ neutrons
 - GSI experiments

"Solar" abundances

Solar abundances: Production of light isotopes

Big Bang nucleosynthesis: H, He, D, no elements heavier than Li

Galactic cosmic ray spallation: Li, Be, B by bombardment of matter by high energy cosmic "ray" particles

Stellar nucleosynthesis 1: Fusion (burning processes) in stars up to Iron and Nickel (A~56) 0.08 - 0.4 M_☉ ⇔ H burning 0.4 - ~8 M_☉ ⇔ H, He burning >8 M_☉ ⇔ H, He, C, Ne, O, Si burning

JUSTUS-LIEBIG

How are the heavy elements formed?

Nuclear Astrophysics = Nuclear Physics + Astrophysics

"Willy" Fowler (1911-1995) 1983 Nobel Prize for Physics

REVIEWS OF MODERN PHYSICS

VOLUME 29, NUMBER 4

Остовея, 1957

Synthesis of the Elements in Stars*

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

Kellogg Radiation Laboratory, California Institute of Technology, and Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California

Fred Hoyle (1915-2001)

B²FH: Burbidge, Burbidge, Fowler, Hoyle, Revs. Mod. Phys. 29 (1957)

JUSTUS-LIEBIG-

Solar abundances: Synthesis beyond iron

B²FH: Burbidge, Burbidge, Fowler, Hoyle, Revs. Mod. Phys. 29 (1957)

I. Dillmann Nuclear Data Week Brookhaven 2011

Solar abundances: Synthesis beyond iron

Local abundance maxima (and minima) are **mirrors of nuclear structure** (shell closures, pairing effects...)

JUSTUS-LIEBIG-UNIVERSITA GIESSEN

Solar abundances: Synthesis beyond iron

I. Dillmann Nuclear Data Week Brookhaven 2011

IESSEN

The "slow neutron capture process'

~50% of abundances >Fe

 Neutron capture slowly compared to β-decay (1 capture per ~1000 y)

- Well defined path along line of stability
- Almost completely understood from astrophysical and nuclear physics side
- End point: ²⁰⁹Bi

The "slow neutron capture process'

	Weak	component	Main	component
Mass region	A<90	(Fe - Zr)	A>(56) 90	(Zr - Bi)
Stellar site	massive stars	(>8 M _{sun})	TP AGB stars	(1-3 M _{sun})
Stellar burning phase	core He	shell C	H burning	He shell flashes
Temperature [MK]	300 (kT= 26 keV)	1000 (kT= 91 keV)	90 (kT= 8 keV)	250 (kT= 23 keV)
Neutron source	Ne-22(α,n)Mg-25	Ne-22(α,n)Mg-25	C-13(α,n)O-16	Ne-22(α,n)Mg-25
Av. neutron density [cm ⁻³]	10 ⁶	1011	107	1011
Duration [y]	106	1-20	104	10

Quasi-stellar neutron spectra

Simulation of stellar Maxwell-Boltzmann energy distributions:

kT= 5.1 keV: ¹⁸O (p,n) ¹⁸F @ E_p=2582 keV (8 keV above TH) Flux @FZK (100 μA): ~10⁵ n/s

kT= 25 keV: ⁷Li (p,n) ⁷Be @ E_p=1912 keV (30 keV above TH) Flux @FZK (100 μA): 2-3*10⁹ n/s

kT= 52 keV: ³H (p,n) ³He @ E_p=1099 keV (80 keV above TH) Flux @FZK (100 μA): ~10⁸ n/s

• *kT*= 5.1 *keV*: M. Heil et al., Phys. Rev. C71, 025803 (2005)

- kT= 25 keV: H. Beer et al., Phys. Rev. C21, 534 (1980)
- kT= 52 keV: F. Käppeler et al., Phys. Rev. C 35, 936 (1987)

Stellar neutron capture database

www.kadonis.org

Karlsruhe Astrophysical Database of Nucleosynthesis in Stars

s-process [Standards] [Logbook] [FAQ] [Links] [Disclaimer] [Contact] p-process

The new version KADoNiS v0.3 is finally online!

Version 0.3 provides data for 357 isotopes including 5 newly added isotopes, 42 updated MACS30, new stellar enhancement factors, and the MACS30 obtained from three different evaluated data libraries. More information below or in the logbook.

Iris Dillmann (GSI Darmstadt/ Uni Giessen) Ralf Plag (GSI Darmstadt/ Uni Frankfurt)

s-process database:

Franz Käppeler (Karlsruhe Inst. of Techn.) Thomas Rauscher (Uni Basel/ Switzerland)

p-process database: Tamas Szücs (ATOMKI Debrecen/ Hungary) Zsolt Fülöp (ATOMKI Debrecen/ Hungary) Thomas Rauscher (Uni Basel/ Switzerland)

Stellar neutron capture database

www.kadonis.org

Karlsruhe Astrophysical Database of Nucleosynthesis in Stars									
s-process	[Standards]	[Logbook]	[FAQ]	[Links]	[Disclaimer]	[Contact]	p-process		

- Compilation, not evaluation!
- Since April 2005
- ¹H ²¹⁰Po
- 357 isotopes: 280 stable (267 measured), 77 radioactive (13 measured)
- Maxwellian cross sections (MACS) and stellar enhancement factors for kT= 5-100 keV
- Experimental and theoretical predictions
- (n,p) and (n,α) reactions for light isotopes
- Based on previous compilations:

B.J. Allen, R.L. Macklin, J.H. Gibbons, Adv. Nucl. Phys. 4 (1971) 205 Z.Y. Bao and F. Käppeler, ADNDT 36 (1987) 411

H. Beer, F. Voss, R. Winters, Astrophys. Journ. Suppl. 80 (1992) 403 Z.Y. Bao, H. Beer, F. Käppeler, F. Voss, K. Wisshak, and T. Rauscher, ADNDT 76 (2000) 1

KADoNiS data sheets

Karlsruhe Astrophysical Database of Nucleosynthesis in Stars

 ▼ Available isotopes for Selenium (Z=34) 74 Se 76 Se 77 Se 78 Se 79 Se 80 Se 82 Se Go to isotope Gol 	s-process	[Standards] [Lo	gbook] [FAQ] [Contact]	[Links] [Discl	aimer] p-process
74_{Se} 76_{Se} 77_{Se} 78_{Se} 79_{Se} 80_{Se} 82_{Se} Go to isotope Go!	▼ Available i	sotopes for Selen	ium (Z=34)		
Go to isotope Go!		⁷⁴ Se ⁷⁶ s	e ⁷⁷ Se ⁷⁸ Se	⁷⁹ Se ⁸⁰ Se	⁸² Se
		Go to	o isotope	Go!	

Recommended MACS30 (Maxwellian Averaged Cross Section @ 30keV)

⁷⁴Se $(n, \gamma)^{75}$ Se

Total MACS at 30keV: 271 + 15 mb

Cross sections do not include stellar enhancement factors!

History Total MACS [mb] Partial to gs [mb] Partial to isomer [mb] Version 0.2 271 ± 15 0.0 267 ± 25* (Version 0.0 corresponds to Bao et al.) synthes, is ut to set of the set

Comment

Previous MACS vs. kT table multiplied by 1.015. Last review: January 30th, 2006

Original:MACS [$<\sigma v > /v_T$] (mb) for kT=30 keV, based on the published cross

2005 t

sections except where indicated otherwise.

Renorm:MACS [$<\sigma v > /v_T$] (mb) for kT=30 keV for which the reference or standard

MOST 2005

cross section was meanwhile improved.

Type: The letters and numbers in the column labelled 'type' give information on how the cross section has been obtained:

- c Directly guoted from the reference itself
- s Semiempirical estimates given in the reference
- e Evaluated value taken directly from the reference
- t Theoretical value

* MACS, SEF and Reaction Rates for different energies

Energy	5keV	10keV	15keV	20keV	25keV	30keV	40keV	50keV	60keV	80keV	100keV
MACS	687	473	384	332	296	271 ± 15	235	212	195	173	159
SEF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Rate	4.09	3.98	3.96	3.95	3.94	3.95	3.96	3.99	4.02	4.12	4.25

MACS:

245

Reference: DHK06a,RaT99

Procedure: 'e+t' (The MACS from KT=5 keV to 100 keV are derived from calculated cross sections, which are then normalized to experimental data, e.g. to the values at kT=25 keV obtained in activation measurements. In these cases the uncertainties should be linearly increased below 25 and above 30 keV to reach about 30% at the extreme kT values.) Year: 2000,2006

FG 55 16

Gor05

I. Dillmann Nuclear Data Week Brookhaven 2011

Jun And Asedered Roy

KADoNiS data sheets

JUSTUS-LIEBIG-

UNIVERSITÄT

GIESSEN

Chart of nuclei \sim 76_{Kr} 74_{Kr} 75_{Kr} 77_{Kr} 78_{Kr} 11.50 m 4.29 m 14.80 h 1.24 h 0.35 β⁺ β⁺ β⁺ β⁺ 321 mb 75_{Br} 74_{Br} 73_{Br} 76_{Br} 77_{Br} 1.61 h 16.20 h 3.40 m 25.40 m 2.38 d β⁺ β+ β+ β⁺ β+ 75_{Se} 72_{Se} 74_{Se} 76_{Se} 73_{Se} 8.40 d 7.15 h 119.78 d 0.89 9.37 β+ β+ β+ 267 mb 164 mb 73_{As} 74_{As} 75_{AS} 71_{As} 72_{As} 2.72 d 1.08 d 80.30 d 17.77 d 100 β⁺ β⁺ β⁺ 362 mb R 71_{Ge} 70_{Ge} 73_{Ge} 72_{Ge} ⁷⁴Ge 11.43 d 20.37 27.31 7.76 36.73 88 mb 73 mb 243 mb 37.6 mb Style: (S, M, L, XL or Alberto) Refresh

Isotope: Selenium

Last modification: August, 2009 by Ralf Plag

This page is **not** optimized for Microsoft Internet Explorer.

Comparison with ENDF/B-VII.0

KADoNiS

GIESSEN

Average experimental uncertainty: +/- 6.5 %

The "rapid neutron capture process"

The "rapid neutron capture process

```
N_r = N_{\odot} - N_s
```

- High neutron densities $(n_n >> 10^{20} \text{ cm}^{-3})$ \Rightarrow ~1 ms per capture
- "Moderate" temperatures (T=1-2 GK) \Rightarrow ⁵⁶Fe to ~Pu (Z=94, A~260) in few seconds

- End point: fission barriers (theory!) \Rightarrow "fission recycling" (2x A~130)
- Astrophysical scenario: still under discussion

Neutron star mergers?

Core collapse supernova?

N = 82

r abundance

N=126

240

220

r only abundance

Input for network calculations

During equilibrium phase:

r-process calculations vs. solar

Strongly dependent on mass models!

β -delayed 1 and 2 neutron emission (P_{1n}, P_{2n})

^7

S_n<**Q**_β Important nuclear structure information P_n : β-strength above S_n t_{1/2}(^AZ+1): sensitive to low-lying β-strength

From time-dependence of n-emission: $t_{1/2}$ (AZ)

$$\begin{split} S_{2n} < Q_{\beta} \\ \text{First experimental identification:} \\ \text{-}^{11}\text{Li} (t_{1/2} = 8.6 \text{ ms}) @ISOLDE: \\ \text{Azuma et al., PRL 43, 1652 (1979)} \\ \text{-}^{30\text{-}32}\text{Na} (t_{1/2} = 13\text{-}48 \text{ ms}) @ISOLDE: \\ \text{Detraz et al., Phys. Lett. 94B, 307 (1980)} \\ \text{-}^{98}\text{Rb} (t_{1/2} = 114 \text{ ms}) @TRISTAN: \\ \text{Reeder et al., PRL 47, 483 (1981)} \end{split}$$

Accurate mass measurements needed for predictions!

JUSTUS-LIEBIG-

Astrophysical influence of P_{1n} and P_{2n}

25

Status P_n for astrophysics

- ⁸He-¹⁵⁰La: ~200 datasets available, ~75 in non-fission region (A<70)
- Only 1 measurement for A>150:

 P_n = 0.007 (+0.007 -0.004) %

Validation missing G. Stetter, Nucl. Sci. Abstr. 16, 1409, Abstr.10963 (1962)

GSI Heavy Ion Research Center Darmstadt/Germany

Schwerlonen Synchrotron (up to 0.9c)

> FRagment Separator

1 GeV/u ²³⁸U 1.5*10⁹ pps ⁹Be target

27

FRagment Separator: Βρ-ΔΕ-Βρ method

JUSTUS-LIEBIG-

I. Dillmann Nuclear Data Week Brookhaven 2011

BEta deLayEd Neutron detector (BELEN-30)

JUSTUS-LIEBIG-

Energéficas, Medioambie y Tecnológicas

> 0.44 0.42 0.40 0.38

0.36 · 0.34 · 0.32 · 0.30 · 0.28 · 0.26 ·

0.24

0.20

0.18

UNIVERSITÄT GIESSEN GSI

Universidad Politecnica de Cataluna, Barcelona

IFIC Valencia

CIEMAT Madrid

MC Simulation

0.1

ENERGY (MeV)

20 counters

30 counters

0.01

30 high pressure ³He long counters PE matrix, size $\sim 1m^3$

M.B. Gómez Hornillos et al., Proc. Int. Conf. on Nucl. Data for Science and Techn. (2010)

JUSTUS-LIEBIG-

I. Dillmann Nuclear Data Week Brookhaven 2011

DETECTION EFFICIENCY

5.5

Silicon IMplantation detector and Beta Absorber

- 1 x- and 1 y-detector, 60x segmented each
- 2 SSSSD, 7x segmented in x
- 3 DSSSD (implantation area): 60x segmented in x-,

40x in y-direction

• 2 SSSSD, 7x segmented in x

PhD thesis C. Hinke, TUM (2010) Diploma thesis K. Steiger, TUM (2009)

SIMBA Constructed and developed at

JUSTUS-LIEBIG-UNIVERSITA GIESSEN

Setup at the FRS (Summer 2011)

Next steps:

- Upgrade of detector: up to 90 counters (detection efficiency ~70%): collaboration with Dubna
- Measure P_{xn}

JUSTUS-LIEBIG-

IESSEN

• Prepare for first experiments @FAIR/DESPEC (>2018)

GSÅ-

βdn measurements at GSI Darmstadt

2 weeks beamtime in September 2011

N=82: Status and S323 proposal

N=126: Status and S410 proposal

Outlook 1: βdn in a storage ring?

Problems: High price of ³He detectors due to shortage; Energy-dependent efficiencies

alternative methods?

IIVERSITÄ

IESSEN

- Fully ionized β dn-mother ^AZ inserted into ESR
- Few (<10) ions ^AZ circulating (500 ns/turn): Half-lives down to ms and μs
- If decay in straight sections: deflection in next dipole

2 possibilities:

 $\Delta B\rho < 3\% \triangleright \beta$ -decay and β dn: detected with Schottky pickups

 $\Delta B\rho$ > 3% • detection with position sensitive detector

Outlook 1: βdn in a storage ring?

I. Dillmann Nuclear Data Week Brookhaven 2011

GIESSEN

Outlook 2: Measure P_{2n} and P_{3n}

Outlook 3: RIB facilities

Summary: Nuclear Astrophysics with Neutrons

"rapid" and "slow" neutron capture process

The "p processes": To p or not to p

- Superposition of independent processes? p = γ (+ rp?) + vp + v
- "γ process": Expl. O/Ne burning during core collapse SN in massive stars
- Shock front heats shells up to 2-3 GK ⇒ Explosive burning for 1-10 s
- Photodisintegration of pre-existing heavy (s or r) seed nuclei
- Formation of >30 stable isotopes between ⁷⁴Se and ¹⁹⁶Hg

