History of Pu-239 fission cross section measurements

Fredrik Tovesson Los Alamos National Laboratory

UNCLASSIFIED

Slide 1

Outline

Experimental approaches

- Detectors
- Neutron sources
- Flux monitoring
- Data analysis
- Uncertainties

Experimental data in EXFOR

- Pre-1970
- Absolute measurements
- Relative measurements up to 20 MeV
- Spallation source measurements

UNCLASSIFIED

Slide 2

Detection methods

- Ionization chambers
 - Fritsch-gridded
 - Parallel plate
 - PPAC
- Surface barrier
- Scintillators
- Track-etch detectors

SIIVE S

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Housing – Aluminum OD 1.740" .040" Thick

> Flex Circuit with Spring Contacts*

FEFEFEF

Index Feature in Housing

Target Cassette

Pull Tab Rear Window

Connector to

Amp Circuits

Ring -Aluminum

Neutron production

Quasi mono-energetic neutrons

- Accelerators: Van de Graaff (Geel, Ohio State U.), cyclotron (UU)
- Li(p,n): 0 3.8 MeV (above 3.8 the Li(p,n') reaction contributes)
- T(p,n): 1.0 5.0
- D(d,n): 3.5 10.0 MeV (deuterium break-up above 7 MeV)
- T(d,n): 14.1-22.0 MeV
- White neutron sources
 - Photonuclear neutron production (ORELA, GELINA).
 - Electron beam (100 MeV) on uranium target (Geel). Energy range from sub-thermal to 20 MeV.
 - Spallation (LANSCE, PNPI, nTOF)
 - Proton beam on heavy target, such as lead or tungsten
 - Neutron range sub-thermal to hundreds of MeV's

UNCLASSIFIED

Slide 4

Flux measurements

- **Relative cross section measurements**
 - U-235(n,f). ٠
 - Standard evaluation
 - ~1% uncertainty in fast region
 - Many systematic uncertainties in the fission counting are reduced
 - H(n,n)H ٠
 - The proton recoil in neutron scattering on hydrogen is detected
 - Uncertainty is fraction of percent
 - Detected with different system than the fission event = larger systematic uncertainties
 - $B(n,\alpha)$, $Li(n, \alpha)$ ٠
 - Standards in the low-energy range (below 100 keV)
- Absolute cross section measurements
 - Associated particle method
 - In the neutron producing reaction the associated particle is detected,

UNCLASSIFIED

Slide 5

Cross section analysis

UNCLASSIFIED

Slide 6

Neutron background

Detection efficiency

- Fission fragment absorption in sample
 - Thin (<200 ug/cm2) samples are typically used. Still, some 2-3% of events are absorbed
- Energy straggling

Straggling causes a tail of the energy distribution, and some events fall below detection threshold

UNCLASSIFIED

Slide 8

Dead time corrections

P. B. Coates, Rev. Sci. Instrum. 63, 1992

 p_i = probability (per T0) to have event in bin *i*

 N_i = measured events in bin *i*

 N_p = number of T0's

D = deadtime in bins

- The dead-time correction is exact at constant event rates. We correct every 10 seconds worth of data, assuming stable beam on this time scale.
- Hardware scalers measures the integral live-time. The only input parameter D is fine tuned until there is perfect agreement with scalers.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 9

Fission identification

Background events

- Radioactive decay
- Neutron-induced chargedparticles
- Gammas
- Rejection criteria
 - Total energy deposited
 - TOF

UNCLASSIFIED

Slide 10

Mass determination

Spectrum from alpha counting of Pu-244 samples used for fission cross section measurement by Staples and Morley

- Samples are typically counted relative to standards. Pu-239 samples are alpha- or gamma counted.
- Enriched samples are needed for fission cross sections. Pu-239 is available with higher than 99% enrichment. Contamination levels can be determined using alpha spectroscopy.

UNCLASSIFIED

Slide 11

Sample and beam profile non-uniformities

- Sample uniformity
 - Highly dependent on method of preparation
 - Evaporated samples can be uniform to within 1-2%
 - Can be measured using counting with mask
- Beam profile
 - Imaging techniques used to determine profile
- Typically not energy differential
 Los Alamos
 NATIONAL LABORATORY

UNCLASSIFIED

Slide 12

Covariance of experimental uncertainties

Elements in the covariance matrix are given by

$$C_{ij} = R_i R_j \left[\sigma_s^2 \delta_{ij} + d_i d_j + b_i b_j + u_i u_j + p_i p_j + \sigma_n^2 \right]$$

Where

 $\begin{array}{l} \mathsf{R}_{i,j} = \text{measured ratio value} \\ \sigma_s = \text{relative statistical uncertainty} \\ \mathsf{d}_{i,j} = \text{relative uncertainty due to dead-time corrections} \\ \mathsf{b}_{i,j} = \text{relative uncertainty due to background corrections} \\ \mathsf{u}_{i,j} = \text{relative uncertainty due to U-233 contamination corrections} \\ \mathsf{p}_{i,j} = \text{relative uncertainty due to Pu-239 contamination corrections} \\ \sigma_s = \text{normalization uncertainty} \end{array}$

UNCLASSIFIED

Slide 13

Experimental work pre-1970

- Generally higher cross sections than current evaluation
- Large discrepancies above 10 MeV

Fairly large experimental uncertainties, or non at all
 UNCLASSIFIED

Slide 14

Absolute measurements

Author	Year	Energy (MeV), points	Neut. Prod.	Detector	Flux mon.
I. D. Alkhazov et al.	1986	4.8-18.8, 3	D-D, D-T	lon. Chamber	Assoc. part, α
Xianjian et al.	1982	1.0-5.8,16	P-T, D-D	lon. Chamber	H(n,n)H, p
M.C.Davis et al.	1978	0.14-0.96, 4	Na-Be, La-Be, Na-D, and Ga-D	track-etch detectors	Calibrated N- source
K. Kari	1978	0.99-20.9, 168	?, cyclotron, TOF	Gas scint.	H(n,n)H, p
I. Szabo et al.	1976	0.035-5.53, 54	P-Li, P-T,D-D	Frisch	Assoc. part, H(n,n)H

UNCLASSIFIED

Slide 15

Absolute measurements

• LO

UNCLASSIFIED

Slide 16

Relative measurements in the fast region

Slide 17

Measurements at spallation sources

- Lisowski et al. performed measurements in late 1980's at LANSCE
- Shcherbakov et al. made similar measurements at PNPI in 1990's. Difference: flight path length, pulse spacing.
- New measurements at LANSCE performed in recent years

UNCLASSIFIED

Slide 18

Summary

- Large data base of Pu-239 energy differential fission cross sections.
- Most data set were collected with the same type of detectors, neutron sources, samples.
- The uncertainties in all individual measurements are >1%. More realistically >2%.
- Fairly large discrepancies exist above 10 MeV.
- There is plenty of measurements relative to U-235. An absolute, or relative to H(n,n), would be of significantly more value.

UNCLASSIFIED

Slide 19

