

ENDF/B-VII.1 Covariances

S. Hoblit National Nuclear Data Center Brookhaven National Laboratory

hoblit@bnl.gov

U.S. DEPARTMENT OF ENERGY

Brookhaven Science Associates

Covariances circa ENDF/B-VII.0

• Total materials with covariance data : 26

Covariance	# materials
MF31	2
MF32	10
MF33	24
MF34	0
MF35	0

Covariances in ENDF/B-VII.1

• Total materials with covariance data : 190

Covariance	# materials
MF31	73
MF32	55
MF33	183
MF34	68
MF35	64

Covariances by material

- Light materials : 12
- Structural & fission products : 105
- Actinides : 20
- Minor actinides : 53

Source of covariances

- New ORNL, LANL, BNL evaluations
- IAEA/JSI evaluations
- COMMARA-2.0
- Neutron standards
- JENDL-4
- ENDF/VII.0 evaluations

NSCS-2

Methodology

Thermal and Resonance Region

- •Source of data
- •Experiments
- •ENDF file (retroactive method)
- •Atlas of Neutron Resonances (ANR)
- •SAMMY analysis
- •full analysis (MF32, Exp. data)
- •retroactive (MF32, ENDF file)
- •EMPIRE Resonance Module (MF32, ANR, scattering radius and thermal point uncertainties reproduced through correlations (if possible)
- •"Kernel Approximation" (MF33, ANR)
- •MF32 with systematic uncertainties in MF33
- •'low-fidelity' (Mark Williams) solution
- Assimilation

Fast neutron range (MF33)

- EMPIRE/KALMAN considering experimental data
- Least Square fitting of experimental data (SOK code)
- EMPIRE/KALMAN without experimental data (Low-Fidelity)
- Dispersion analysis differences among evaluations (and exp. data)
- Reconsider previous work (ENDF/B-VI.8, Low-Fidelity)
- Visual analysis of experimental data
- Assimilation

NATIONAL LABOR

6

Quality Assurance

- New web-based Sigma-QA (A. Sonzogni) allows visual and also quantitative inspection of:
 - Differential uncertainties (dynamic)
 - Integral uncertainties (static)
- UnCor applied to full library, performs 8 tests, warnings for possible problems in processed library, including:
 - small uncertainties: (n,tot) < 1%, (n,el) and (n, γ) < 2%, etc.
 - non-positive-definite matrices
 - rightarrowSubstantial warnings still produced for β 5!
 - Negative eigenvalues removed in ENDF files by Dave Brown with fudge

Quality Assurance

- Review of error messages from standard checking codes checkr, fizcon and psyche.
- Some remaining fizcon errors (probably ok):
 - large errors in MF1/MT458 for : ²²⁷Ac, ²³⁷U, ...
 - doubly-indirect NC-style covariances: ¹⁶O, Pb isotopes
 - threshold reactions covariance not starting at 1.0E-05, (allowed in format): W isotopes and ²³²Th
 - lower energy not 1.0E-05 for each for cross-correlation with threshold reaction: W isotopes and ²³²Th

BNL additions

Major focus at BNL has been the adoption of AFCI/COMMARA covariance data

Most materials in COMMARA library had no covariance data in VII.0 and the (mostly MF33) covariances were moved directly

A few materials contained new MF32 covariances which required special handling: 50,52,53Cr and 58,60Ni.

NSCS-2

Additional modifications...

- Zr isotopes: New BNL eval with total modulated following VI.8, JENDL-4 ang dist. for elastic. Modified thermal capture for Zr-90.
- Standards covariances adopted for ⁶Li, ¹⁰B,¹⁹⁷Au, ²³⁷U, ²³⁸U, ²³⁹Pu. Uncertainties increased to cover dispersion, where necessary.
- Many more minor fixes & updates.

NSCS-2

- ²³⁶U, ²³⁷Np, ²⁴¹Pu, ^{242m,243}Am
- ¹⁴¹Pr, ¹³⁹La, ¹⁴⁷Pm, ^{204,206,207,208}Pb, ²⁰⁹Bi
- ^{131,132,134}Xe, ^{133,135}Cs, ^{166167,168,170}Er, ^{153,155}Eu
- ^{143,145,146,148}Nd, ^{149,151,152}Sm, ⁹⁵Nb, ^{127,129}I
- 101,102,103,104,105 Ru, 105,106,107,108 Pd
- ^{155,156,157,158,160}Gd, ¹⁰⁹Ag, ¹⁴¹Ce
- 90,91,92,93,94,95,96**Zr**, 92,94,95,96,97,98,100**MO**
- ^{24,25,26}Mg, ^{28,29,30}Si, ^{54,56,57}Fe
- ^{1,2}H, ⁶Li, ⁹Be, ^{10,11}B, ¹²C, ¹⁵N, ¹⁶O, ²⁷Al

COMMARA-2.0 MF33 \Rightarrow ENDF/B-VII.1 β 3

50,52,53**Cr &** 60**Ni**

- Here, we adopted COMMARA covariance data in the fast region.
- An additional MF33 LB=1 section was added to elastic to account for the uncertainty in the scattering radius R'
- For ^{50,52}Cr and ⁵⁸Ni an additional MF33 LB=1 sections were added to capture to match COMMARA uncertainties.

⁵²Cr

Sigma ⁵²Cr

ND

61

(n,t) taken from new LANL R-matrix analysis; other reaction channels from COMMARA-2.0

⁵⁶Fe

Kernel method in resonance region;

Modified VI.8 in fast region, based on dispersion analysis

NSCS-2

²⁰⁸Pb

17

Kernel method in resonance region;

Empire/Kalman in fast

NSCS-2

Am-242m,243 Np-237

No covariances present in ENDF/B-VII.1

MF33 covariances from AFCI moved directly into ENDF/B-VII.1

Differences between 7.0 (AFCI) and 7.1 less than quoted uncertainty from AFCI

²³⁷Np

S. Hoblit

NSCS-2

Vienna, Sept 14-16, 2011

19

234,236

No covariances present in ENDF/B-VII.1

MF33 covariances taken directly from AFCI 2.0

²³⁶U Difference in capture cross sections since VII.0 above 100 keV within uncertainty band.

²³⁴U extended from 20 to 30 MeV.

NSCS-2

236U

NSCS-2

Vienna, Sept 14-16, 2011

21

Pu-241

New LANL COMMARA eval adopted in ENDF/B-VII.1

NNDO

Summary

- ENDF/B-VII.1 β 5 closed Oct 31, 2011, SVN version 458
- Total materials with covariance data: 190
 - Nubar: 73
 - Res param: 55
 - Cross sections: 183
 - Ang dist: 68
 - Energy spec: 64

NSCS-2

Summary

- Review of entire covariance library:
 - Use of Sigma package for $\beta 5$
 - Scan entire library with checking routines
 - Examination of fudge & unCor warnings
 - Users' feedback

NSCS-2

⁵³Cr

Sigma ⁵³Cr

NNDC

NSCS-2

27

Final status

- O-16: capture cross section from JENDL-4.0 wrong parent state in MF14,Mt103 corrected
- Am-243: new (n,2n) isomeric ratio, new eval for RRR, URR and fast capture regions.
- Pu-242: New BNL eval for RRR, URR and fast capture. Remaining JENDL-4 eval not modified.
- Pu-238: Corrected MF3,MT19,20, MF4,MT18, MF6, MT37
- Am-241: Capture modified

Vienna, Sept 14-16, 2011

28

⁵⁸Ni

⁹⁶Mo

30

Kernel method in resonance region;

Empire/Kalman in fast

NSCS-2

Methodology

- Move MF33 covariance data into ENDF file
- Process with checking codes
- Repair, if needed
- Process with NJOY (R. Arcilla)
- Use online Sigma package to compare to ENDF/B-VII.0 & COMMARA-2.0 (Sonzogni)
- make addition modifications, as required.

COMMARA Materials

- 110 materials most relevant to fast reactor R&D
 - 12 light nuclei (LANL)
 - -78 structural materials (BNL)
 - 20 major and minor actinides (LANL + BNL)
- 135 files
 - 110 cross section covariances,
 - 20 nubars,
 - -3 PFNS,
 - -2 mubars

H	28 Si	⁹² Mo	²⁰⁹ Ag	149Sm	232Th
^{2}H	²³ Si	94 Mo	127I	151 Sm	233 U
*He	³⁰ Si	95 Mo	129I	152 Sm	234U
⁶ Li	⁵⁰ Cr	⁹⁶ Mo	¹³¹ Xe	¹⁵³ Eu	^{238}U
² Li	^{52}Cr	97 Mo	132 Xe	^{155}Eu	^{236}U
⁹ Be	⁵³ Cr	98 Mo	¹³⁴ Xe	153 Gd	^{238}U
^{10}B	⁵⁵ Mn	100 Mo	133Cs	¹⁵⁶ Gd	²³⁷ Np
11 B	⁵⁴ Fe	⁹⁹ Te	135 Cs	¹⁵⁷ Gd	²³⁸ Pu
^{12}C	⁵⁶ Fe	101 Ru	139La	¹⁵⁸ Gd	²³⁹ Pu
15N	57 Fe	¹⁰² Ru	¹⁴¹ Ce	160 Gd	²⁴⁰ Pu
¹⁶ O	⁵⁸ Ni	103 Ru	¹⁴¹ Pr	166Er	240 Pu
$^{19}\mathrm{F}$	⁶⁰ Ni	¹⁰⁴ Ru	143 Nd	167Er	242 Pu
23 Na	⁹⁰ Zr	106Ru	143Nd	¹⁶⁸ Er	241 Am
^{24}Mg	91 Zr	¹⁰³ Rh	¹⁴⁶ Nd	$170 {\rm Er}$	²⁴² "Am
^{25}Mg	⁹² Zr	105 Pd	¹⁴⁸ Nd	²⁰⁴ Pb	²⁴³ Am
^{26}Mg	⁹³ Zr	106Pd	147 Pm	²⁰⁶ Pb	^{242}Cm
27 AĬ	94 Zr	107 Pd		²⁰⁷ Pb	243 Cm
	93 Zr	108 Pd		²⁰⁸ Pb	²⁴⁴ Cm
	⁹⁶ Zr			²⁰⁹ Bi	245 Cm
	⁹⁶ Nb				²⁴⁶ Cm

AFCI Structural Materials

	RRR		Fast		
	Integral	40	Empire/Kalman	30	
	Kernel	20	Model-based	30	
	SAMMY	9	6.8	3	
0	Empire	2	6.8 & mods	8	- BROO

IND