Eigenviolence and other fixes to ENDF/B-VII.1 covariances

David Brown

a passion for discovery

Outline

- Cosmetic fixes to thresholds
 - All JENDL-4.0 actinides
 - 243,244m1Am
- Attempted to render all covariance matrices positive definite
 - Why these changes are important and for whom
 - What I did
 - Trouble nuclei: natC, 10,11B, 9Be, and those that could not be fixed...
 - Violence done to standards evaluations
- Summaries of changes

Cosmetic change to thresholds

1st bin supposed to be below threshold, but sometimes misses a little. We set variance to be equal to 1st non-zero variance

3

Outline

- Cosmetic fixes to thresholds
 - All JENDL-4.0 actinides
 - 243,244m1Am

- Attempted to render all covariance matrices positive definite
 - Why these changes are important and for whom
 - What I did
 - Trouble nuclei: natC, 10,11B, 9Be, and those that could not be fixed...
 - Violence done to standards evaluations
- Summaries of changes

Why positive definiteness important

The most common approach to Monte-Carlo uncertainty propagation is to do a eigenvalue decomposition of the covariance matrix:

$$\mathbf{\Delta^2}\sigma = \sum_i \vec{v}_i^T \lambda_i \vec{v}_i$$

Then vary in the dominant eigen-directions:

$$\vec{\sigma} = \vec{\sigma_0} + \xi \sqrt{\lambda_i} \vec{v}_i$$

- Requires *real* uncertainties, if covariance diagonal, would have: $\lambda_i = \Delta^2 \sigma_i$
- Approach used in LLNL's kiwi package & by Kent Parsons in LANL studies.

Eigenviolence

Easiest thing is to reconstruct covariance matrix, w/o negative eigenvalues:

$$\mathbf{\Delta}^2 \sigma = \sum_{i, \lambda_i \ge 0} \vec{v}_i^T \lambda_i \vec{v}_i$$

 Occasionally, finite precision of ENDF fields allow fake negative eigenmodes to occur, so should through away small positive modes too:

$$\mathbf{\Delta^2}\sigma = \sum_{i,\lambda_i \ge \varepsilon} \vec{v}_i^T \lambda_i \vec{v}_i$$

If plan to invert matrix, this is good idea anyway

BROOKHAVEN NATIONAL LABORATORY

These changes are essentially cosmetic changes

Brookhaven Science Associates

- This is difference between new and old covariance matrices for ¹H(n,g)
- Greatest absolute difference is barely detectable at ENDF precision in diagonal elements

More sample changes

²²⁹Pa(n,f)

²²⁹Pa(n,n₂)

For some nuclei, the change was more than cosmetic, but the covariances were in need of a facelift

natC(n,el)

Note: this is a standards cross section 9
Similar sized changes for 9Be, 10.11B, 54Fe, 59Co

Sometimes removing the negative eigenvalues wasn't possible

 Tough cutting, even into small positive eigenvalues wasn't enough; iterating doesn't help either

234Th,²³⁸U,²³⁹Np,²⁵⁰Cm,^{251,253,255}Es(n,f), ^{254m1}Es(n,n₂) impacted

Outline

- Cosmetic fixes to thresholds
 - All JENDL-4.0 actinides
 - 243,244m1Am
- Attempted to render all covariance matrices positive definite
 - Why these changes are important and for whom
 - What I did
 - Trouble nuclei: natC, 10,11B, 9Be, and those that could not be fixed...
 - Violence done to standards evaluations

Summaries of changes

Summary of changes to standards evaluations

- ¹H(n,el): unchanged, did change (n,g)
- ³He(n,p): untouched
- ⁶Li(n,t): unchanged, did change (n,el)
- ¹⁰B(n,a): unchanged, did change (n,el), (n,tot)
- natC(n,el): Changed (n,el) and (n,tot), cosmetic only!
- ¹⁹⁷Au(n,g): untouched
- ²³⁵U(n,f): unchanged, did change (n,2n), (n,g)
- 238U(n,f): Changed (n,f) and (n,non), cosmetic only!
- (²³⁹Pu(n,f)): unchanged, did change (n,2n), (n,g), (n,non)

BROOKHAVEN NATIONAL LABORATORY

Summary of rest of library

- Large changes: ⁹Be, ^{10.11}B, ⁵⁴Fe, ⁵⁹Co
- Small changes to many reactions:
 - ²³Na, ^{46,48}Ti, ⁸⁹Y, ⁹⁰⁻⁹⁶Zr, ⁹⁵Nb, ⁹⁹Tc, ^{101-103,106}Ru, ¹⁰³Rh, ¹⁰⁶⁻¹⁰⁸Pd, ^{127,129}I, ^{132,134}Xe;
 - Rare Earths: ¹³⁹La, ¹⁴¹Ce, ¹⁴⁷Pm, ^{149,151,152}Sm, ^{153,155}Eu, ¹⁵²⁻¹⁶⁰Gd, ¹⁶⁶⁻¹⁷⁰Er;
 - ^{191,193}Ir, ²⁰⁴⁻²⁰⁸Pb, ²⁰⁹Bi;
 - Actinides: ²²⁵⁻²²⁷Ac, ²²⁷⁻²³⁴Th, ²²⁹⁻²³²Pa, ²³⁰⁻²³²U, ²³⁶⁻²⁴⁶Pu, ²³⁴⁻²³⁹Np, ²⁴⁰Am, ²⁴⁰⁻²⁵⁰Cm, ²⁴⁵⁻²⁵⁰Bk, ^{246,248-254}Cf, ²⁵¹⁻²⁵⁵Es, ²⁵⁵Fm
- Unfixable: ²³⁴Th, ²³⁸U, ²³⁹Np, ²⁵⁰Cm, ^{251,253,255}Es(n,f), ^{254m1}Es(n,n₂)
- Note: No apparent common factors causing bad eigenvalues

BROOKHAVEN NATIONAL LABORATORY