Eigenviolence and other fixes to ENDF/B-VII. 1 covariances

David Brown

Outline

- Cosmetic fixes to thresholds
- All JENDL-4.0 actinides
- $243,244 \mathrm{~m} 1 \mathrm{Am}$
- Attempted to render all covariance matrices positive definite
- Why these changes are important and for whom
- What I did
- Trouble nuclei: natC, 10,11B, 9Be, and those that could not be fixed...
- Violence done to standards evaluations
- Summaries of changes

Cosmetic change to thresholds

1st bin supposed to be below threshold, but sometimes misses a little. We set variance to be equal to 1 st non-zero variance

Outline

- Cosmetic fixes to thresholds
- All JENDL-4.0 actinides
- 243,244m1Am
- Attempted to render all covariance matrices positive definite
- Why these changes are important and for whom
- What Idid
- Trouble nuclei: natC, 10,11B, 9Be, and those that could not be fixed...
- Violence done to standards evaluations
- Summaries of changes

Why positive definiteness important

- The most common approach to Monte-Carlo uncertainty propagation is to do a eigenvalue decomposition of the covariance matrix:

$$
\boldsymbol{\Delta}^{\mathbf{2}} \sigma=\sum_{i} \vec{v}_{i}^{T} \lambda_{i} \vec{v}_{i}
$$

- Then vary in the dominant eigen-directions:

$$
\vec{\sigma}=\overrightarrow{\sigma_{0}}+\xi \sqrt{\lambda_{i}} \vec{v}_{i}
$$

- Requires *real* uncertainties, if covariance diagonal, would have: $\lambda_{i}=\Delta^{2} \sigma_{i}$
- Approach used in LLNL's kiwi package \& by Kent Parsons in LANL studies.

Eigenviolence

- Easiest thing is to reconstruct covariance matrix, w/o negative eigenvalues:

$$
\boldsymbol{\Delta}^{\mathbf{2}} \sigma=\sum_{i, \lambda_{i} \geq 0} \vec{v}_{i}^{T} \lambda_{i} \vec{v}_{i}
$$

- Occasionally, finite precision of ENDF fields allow fake negative eigenmodes to occur, so should through away small positive modes too:

$$
\boldsymbol{\Delta}^{\mathbf{2}} \sigma=\sum_{i, \lambda_{i} \geq \varepsilon} \vec{v}_{i}^{T} \lambda_{i} \vec{v}_{i}
$$

- If plan to invert matrix, this is good idea anyway

These changes are essentially cosmetic changes

- This is difference between new and old covariance matrices for ${ }^{1} \mathrm{H}(\mathrm{n}, \mathrm{g})$
- Greatest absolute difference is barely detectable at ENDF precision in diagonal elements

More sample changes

${ }^{229} \mathrm{~Pa}(\mathrm{n}, \mathrm{f})$

${ }^{229} \mathrm{~Pa}\left(\mathrm{n}, \mathrm{n}_{2}\right)$

For some nuclei, the change was more than cosmetic, but the covariances were in need of a facelift nat $\mathbf{C}(n, e l)$

Note: this is a standards cross section 9

Sometimes removing the negative eigenvalues wasn't possible

- Tough cutting, even into small positive eigenvalues wasn't enough; iterating doesn't help either

- ${ }^{234} \mathrm{Th},{ }^{238} \mathrm{U},{ }^{239} \mathrm{~Np},{ }^{250} \mathrm{Cm},{ }^{251,253,255} \mathrm{Es}(\mathrm{n}, \mathrm{f}),{ }^{254 \mathrm{~m} 1} \mathrm{Es}\left(\mathrm{n}, \mathrm{n}_{2}\right)$ impacted

Outline

- Cosmetic fixes to thresholds
- All JENDL-4.0 actinides
- 243,244m1Am
- Attempted to render all covariance matrices positive definite
- Why these changes are important and for whom
- What I did
- Trouble nuclei: natC, 10,11B, 9Be, and those that could not be fixed...
- Violence done to standards evaluations
\Rightarrow - Summaries of changes

Summary of changes to standards evaluations

- ${ }^{1} \mathrm{H}(\mathrm{n}, \mathrm{el})$: unchanged, did change (n, g)
- ${ }^{3} \mathrm{He}(\mathrm{n}, \mathrm{p})$: untouched
- ${ }^{6} \mathrm{Li}(\mathrm{n}, \mathrm{t})$: unchanged, did change (n,el)
- ${ }^{10} B(n, a)$: unchanged, did change ($n, e l$), (n, tot)
- nat $C(n, e l)$: Changed (n, el) and (n, tot), cosmetic only!
- ${ }^{197} \mathrm{Au}(\mathrm{n}, \mathrm{g})$: untouched
- ${ }^{235} \mathrm{U}(\mathrm{n}, \mathrm{f})$: unchanged, did change $(\mathrm{n}, 2 \mathrm{n}),(\mathrm{n}, \mathrm{g})$
- ${ }^{238} \mathrm{U}(\mathrm{n}, \mathrm{f})$: Changed (n, f) and (n, non), cosmetic only!
- (${ }^{239} \mathrm{Pu}(\mathrm{n}, \mathrm{f})$): unchanged, did change ($\mathrm{n}, 2 \mathrm{n}$), (n, g), (n,non)

Summary of rest of library

- Large changes: ${ }^{9} \mathrm{Be},{ }^{10.11 \mathrm{~B},{ }^{54} \mathrm{Fe},{ }^{59} \mathrm{Co}}$
- Small changes to many reactions:
- ${ }^{23} \mathrm{Na},{ }^{46,48} \mathrm{Ti},{ }^{89} \mathrm{Y},{ }^{90-96 \mathrm{Zr},{ }^{95} \mathrm{Nb},{ }^{99} \mathrm{Tc},{ }^{101-103,106} \mathrm{Ru},{ }^{103} \mathrm{Rh} \text {, }}$ ${ }^{106-108} \mathrm{Pd},{ }^{127,129},{ }^{132,134} \mathrm{Xe}$;
- Rare Earths: ${ }^{139} \mathrm{La},{ }^{141} \mathrm{Ce},{ }^{147} \mathrm{Pm},{ }^{149,151,152} \mathrm{Sm},{ }^{153,155 \mathrm{Eu},}$ ${ }^{152-160} \mathrm{Gd}$, ${ }^{166-170} \mathrm{Er}$;
- ${ }^{191,193} \mathrm{Ir},{ }^{204-208} \mathrm{~Pb},{ }^{209} \mathrm{Bi}$;
 ${ }^{234-239} \mathrm{~Np},{ }^{240} \mathrm{Am},{ }^{240-250} \mathrm{Cm},{ }^{245-250} \mathrm{Bk},{ }^{246,248-254} \mathrm{Cf},{ }^{251-255} \mathrm{Es}$, ${ }^{255} \mathrm{Fm}$
- Unfixable: ${ }^{234} \mathrm{Th},{ }^{238} \mathrm{U},{ }^{239} \mathrm{~Np},{ }^{250} \mathrm{Cm},{ }^{251,253,255} \mathrm{Es}(\mathrm{n}, \mathrm{f})$, ${ }^{254 m 1}{ }^{1}$ Es($\mathrm{n}, \mathrm{n}_{2}$)
- Note: No apparent common factors causing bad eigenvalues

