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T-dependent Legendre Moments  

•  Legendre moments of Ouisloumen and Sanchez (Nucl. 
Sci. Eng. 107, 189, (1991)) are three-fold nested integrals 
è computable in principle, but CPU-time consuming ! 
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Integration by parts of nested integrals 

•  Integration by parts is used evaluate the two inner integrals 
–  Analytical integration by parts is automated in the program 
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•  If the ang. dist. prob. in the CM is a Legendre expansion 

•              in terms of erf(); derivation in a M&C 2011 paper 
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Later we will use Blatt-Biedenharn coefficients                   for an 
anisotropic angular distribution of scattering XS. 
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G. Arbanas et al., Proc. MC 2011, May 8-12, 2011, Rio de Janeiro, Brazil,  
ISBN 978- 85-63688-00-2, LAS/American Nuclear Society, (2011). [CD-ROM] 
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Elastic Scattering Cross Section 
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Test 3 a): isotropic scattering in CoM  

•  In the next slide we show the first six (0- to 5-th) Legendre 
moments computed by our method (“OS”) and by the MC 
–  A good agreement can be seen for all moments. 
–  The incoming energy E=6.5 eV was intentionally chosen just 

below the 6.7 eV resonance energy to magnify the effect of up-
scattering: 
•  i.e., there is a large probability that the outgoing energy E’ > E = 6.5 eV  

– Consider the area under the P0(EàE’) below E vs. above E on the next slide 
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Consistency with Monte Carlo 
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0-14th Legendre Moments E=6.5 eV 

!"#$

!%#$

!&#$

#$

&#$

%#$

"#$

'#$

(#$

)#$

)*&$ )*%$ )*"$ )*'$ )*($ )*)$ )*+$ )*,$ )*-$ +$

!
!"
#$
%%&

$'
())
*+
,-
./
)

$')*-./)

0-12)345-"6!)47)$892):;962))
$<=2>)-.)?<@AAA)B)C%DEF)

#./$
&0.$
%12$
"32$
'./$
(./$
)./$
+./$
,./$
-./$
&#./$
&&./$
&%./$
&"./$
&'./$

<E’>=6.60 eV 



8  Managed by UT-Battelle 
 for the U.S. Department of Energy Presentation_name 

0-14th Legendre Moments E=6.8 eV 
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DD XS Legendre Expansion vs. MC 
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Legendre moments for E’=E 
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•  This plot explains slow convergence of DD XS near E’=E 
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Variance of Legendre Moments 

•  The expressions for Legendre moments described above 
can be used to compute a variance-covariance of DD XS. 

• Propagation of uncertainties of the scattering cross section 
yields expressions for variance-covariance of the Legendre 
Moments. 
–  We write down the expressions on the next slide 
–  Assumption:  

•  All uncertainty arises from the variance-covariance of the 1D scattering cross 
section only. 

•  To appear in Proceedings of NCSC2, September 2011, Vienna 
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Covariance of Legendre Moments 
•  n-th Legendre Moment could be written as 

–  Where                         contains all of the kinematic factors 
  

! 

"n
T (E #E ')$ fnm

T (E #E ',t) "0K (ECM (t))dt0

%

&
m'0
(

  

! 

"#$ n
T (E %E ')#$ n'

T (E %E ')& ' fnm
T (E %E ',t) fn'm '

T (E %E ',t ')
0

(

)0

(

)
m,m'*0
+

"#$ 0K (ECM (t))#$
0K (ECM(t'))&dtdt'

  

! 

"(#$ s
T (E %E ',µ))2& ' 2n+1

2
2n'+1
2 Pn (µlab)Pn ' (µlab)

n,n'(0
) "#$ n

T (E %E ')#$ n'
T (E %E ')&

fnm
T (E! E ', t)

• Using the above, a covariance of Legendre Moments is 

–  Where                                              is the 0K scatt. XS covariance !!" 0K (ECM(t))!"
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• Using the above, a variance of double diff. scatt. XS is 
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Elastic Scattering Covariance Matrix 
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DD XS and its uncertainty: up-scattering 

•  The two shapes are similar 
–  Their ratio is approx. equal to 

the uncertainty at the the 
peak of the 6.67 eV 
resonance,  i.e. 5% 

–  Also true at E=6.8 eV on the 
next slide 

–  # neutrons / angle      const. 
•  But not their energy distribution 
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• Slow convergence at E=E’ 
–  Other methods considered: 

•  Factor out (n+1/2)σn(E-->E’) 
•  Interpolate E’=E-Δ and E’=E+Δ	
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DD XS and its uncertainty: down-scattering 
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•  The two shapes are similar 
–  Their ratio is approx. equal 

to the uncertainty at the the 
peak of the 6.67 eV 
resonance,  i.e. 5% 

–  Also true at E=6.5 eV on the 
previous slide 

• Slow convergence at E=E’ 
–  Other methods considered: 

•  Factor out (n+1/2)σn(E-->E’) 
•  Interpolate E’=E-Δ and E’=E+Δ	
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Summary and Outlook 

• Doppler broadened DD XS (or its Legendre moments) 
–  Needed for resonances of heavy nuclei below few 100’s eV 

• Exact Legendre moments can now be computed up to 20th  
–  The original triple-nested integral cast into a single integral  
–  Effects of anisotropic scattering in the CoM frame computable 

• Computed Variance-Covariance of DD XS (or its Leg. Mom.’s) 
–  Study convergence of Legendre moments to DD XS (e.g. MC)  

• Attempts to implement exact Legendre moments into 
CENTRM, a deterministic CE 1-dim discrete ordinates 
–  Solving Boltzmann Eq. on a fine energy mesh, typically 70,000 pts. 
–  Using the scattering kernel in the scattering source computation 
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Testing the method:   

•  In order of increasing difficulty the tests were: 
1.  Compared to method used in SCALE that is valid for constant XS 
2.  Compared integral DB XS to the integral of P0(EàE’)dE’ 
3.  Compared the Legendre moments to those computed by MC (B. 

Becker) for  
a)  isotropic       angular scattering XS in the CoM 
b)  anisotropic   --------------------||------------------------- 

• All tests passed 
• Results of various tests in 2. and 3 a) and 3 b) will be shown 
• All plots in this presentation set T=1000 K 

–  several other temperatures have  been used 
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Test 2: Integrated DB scatt. XS 
•  The integrated DB scatt. XS can be computed as 

•  and also as (e.g. Sec. III.B.1 of the SAMMY Manual: 
http://www.ornl.gov/sci/nuclear_science_technology/nuclear_data/sammy/manual.html ) 

•  The next slides shows a good agreement between the 
two for energies E spanning the 6.7 eV 238U resonance: 
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Consistency check with integrated DB XS 
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Overview 

• A history of various methods and approximations used to 
compute Doppler broadening of energy-dependent cross 
sections as a function of temp. T will be outlined 

• A method to compute Legendre moments derived by 
Ouisloumen and Sanchez (OS) Nucl. Sci. Eng. 107, 189 (1991): 
–  The original expression is a triple-nested integral 

•  Practical only for computation of the 0th and the 1st Legendre moment and 
for isotropic angular distribution of of scattering cross section 

–  A new method renders a triple-nested integral of OS into a single 
integral by virtue of systematic application of integration by parts 
•  Arbitrary order of Legendre moments are computable 
•  Arbitrary angular distribution of the scatt. XS in the CoM can be handled 

•  This method is then applied to computation of covariances 
of DD XS near the 6.67 eV resonance of U-238 
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Brief review of T-dependent methods 
• Wigner and Wilkins (1954) 

–  P0 for a constant  isotropic XS 

• Blackshaw and Murray (1967) 
–  P0 and P1 of E-dependent (e.g. resonant) isotropic XS 

• Ouisloumen and Sanchez (1991) 
–  All Legendre moments of E-dependent anisotropic XS 
–  only P0 computed; P1, etc. involve a three-fold nested integral 

• Rothenstein and Dagan (1998, 2004) 
–  Double differential scattering XS (two-fold nested integral) 
–  It reproduces Legendre moments of Ouisloumen and Sanchez 
–  Implemented in an experimental version of NJOY 

•  This Work 
–  All Leg. Moments, Ang. Dist. In CM, via a single integral 
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Anisotropic Ang. Scattering in the CoM 
• Conventional Blatt-Biedenharn (BB) coefficients are used 

to introduce anisotropic angular distribution into the CoM 
• Our computation is compared with the Monte-Carlo (MC) 
• Anisotropy introduced by the BB coeff’s increases with E 

–  Consequently, deviations between Legendre moments for the 
BB anisotropic ang. dist. and the respective moments for the 
isotropic ang. dist. increase with incoming energy E.  The 
following deviations were computed for temperature T = 1000 K 
•  ~ 0.01% at 6 eV 
•  ~ 2%      at 2 keV 
•  ~ 10%    at 10 keV 

•  To magnify the deviations, the incoming energy E is set 
relatively high, E = 9985 eV and T = 1000 K. 
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P0(EàE’) isotropic vs. anisotropic (BB) 
•  The isotropic and anisotropic 0-th Legendre moments computed by: 

–  our method (labeled “OS” for Ouisloumen-Sanchez)  
–  Monte-Carlo (“MC”) 

•  Relatively good agreement between OS and MC everywhere 
–  But, our computation displays odd behavior at E’=9820 for isotropic and anisotropic, to be resolved 

E=9985 eV 
T=1000 K 
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E=9985 eV 
T=1000 K 

P1(EàE’) isotropic vs. anisotropic (BB) 
•  The isotropic and anisotropic 1-th Legendre moments computed by: 

–  our method (labeled “OS” for Ouisloumen-Sanchez)  
–  Monte-Carlo (“MC”) 

•  Relatively good agreement between OS and MC everywhere 
–  But, our computation displays odd behavior at E’=9820 for isotropic and anisotropic, to be resolved 
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E=9985 eV 
T=1000 K 

P2(EàE’) isotropic vs. anisotropic (BB) 
•  The isotropic and anisotropic 2-th Legendre moments computed by: 

–  our method (labeled “OS” for Ouisloumen-Sanchez)  
–  Monte-Carlo (“MC”) 

•  Relatively good agreement between OS and MC everywhere 
–  But, our computation displays odd behavior at E’=9820 for isotropic and anisotropic, to be resolved 


