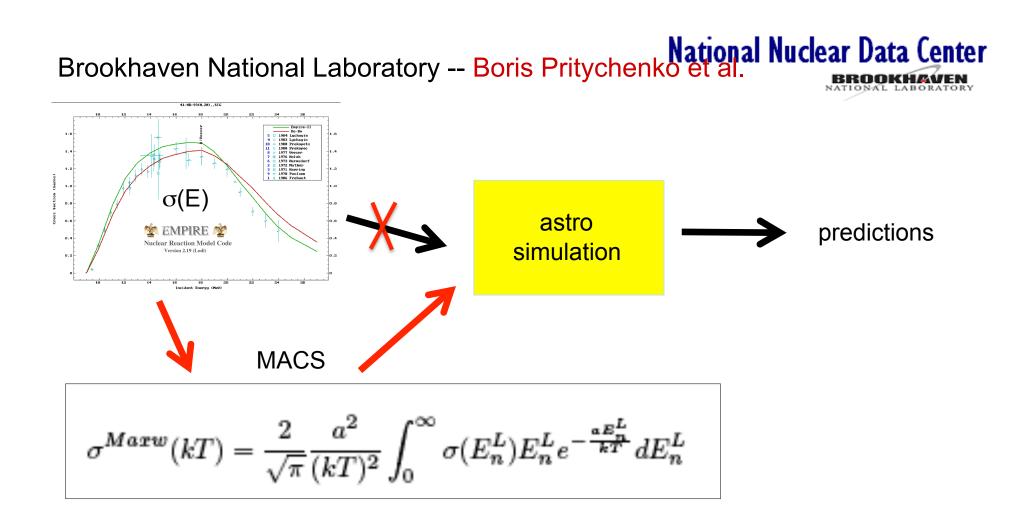
Astrophysics Task Force

USNDP Contributors to this report

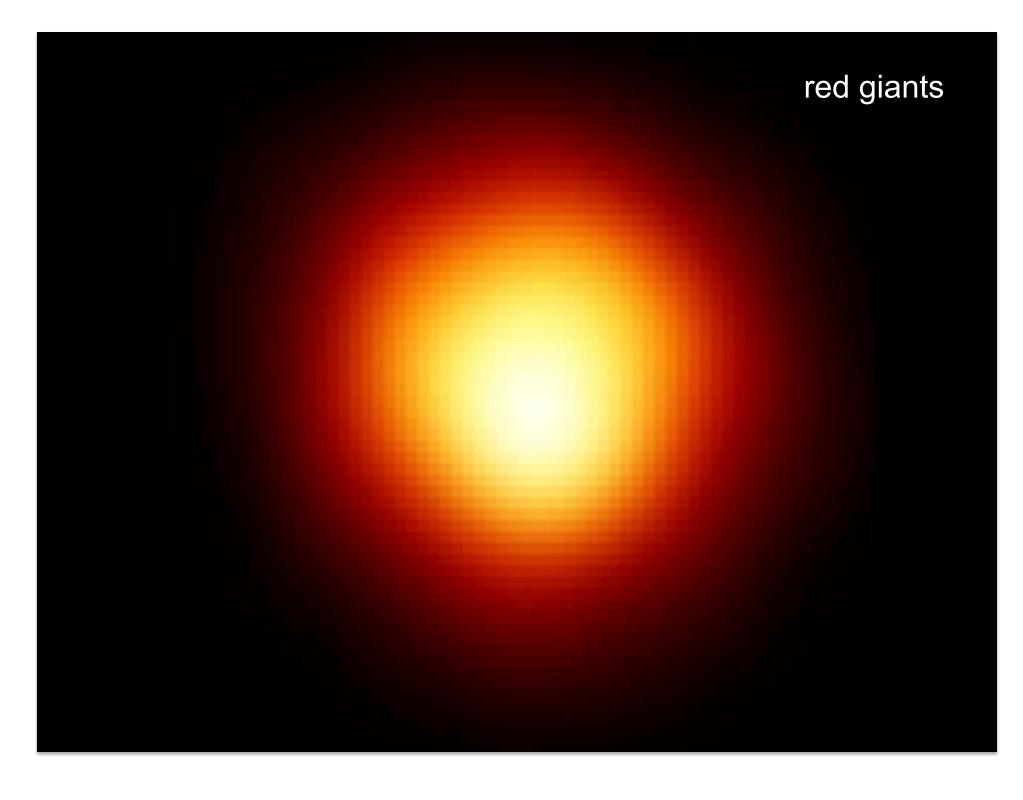
- Argonne National Laboratory
- Oak Ridge National Laboratory
- McMaster University
- Brookhaven National Laboratory

Caroline Nesaraja, Michael Smith ORNL Physics Division

National Nuclear Data Center


NATIONAL LABORATORY

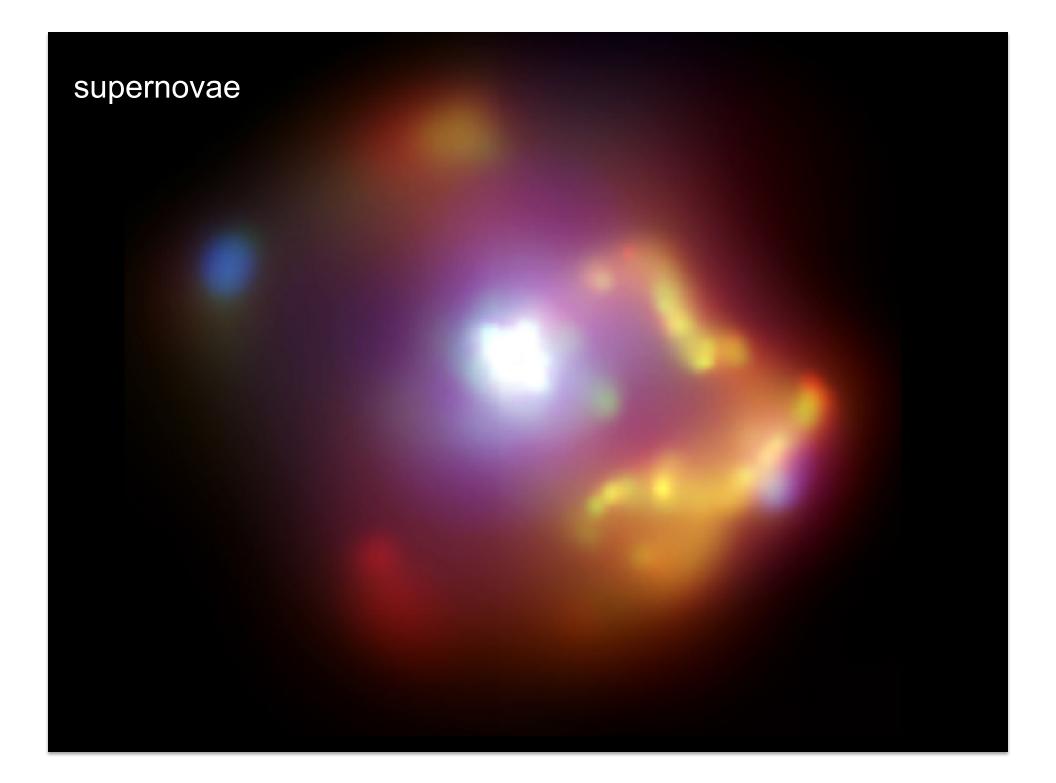
National Laboratory


Impiring Innovation and Discovery

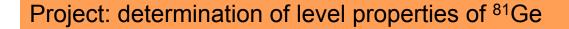
The calculation of **Maxwellian-averaged cross sections (MACS)** from neutron-induced reaction cross sections in **ENDF** enables the astrophysics community to use this valuable library in their simulations Brookhaven National Laboratory -- Boris Pritychenko et al.

MACS have now become an **integral part** of the ENDF library development effort

- for the first time, in ENDF/B-VII.1, MACS and uncertainties are included in the ENDF paper
- comparisons of ENDF MACS with those in the KADONIS library have became a powerful quality assurance tool
- this has triggered ENDF evaluation updates for ³He,⁹Be,¹⁰C,¹⁶O, ⁵⁸Co
- ENDF evaluators now treat KADONIS seriously (ignored in the past)
- Wick Haxton has used ENDF cross sections in his recent assessment of the cold, early r-process scenario (a PRL paper)
- active support of nuclear astrophysics influence on ENDF library development at NNDC (Michal Herman) and LANL (Mark Chadwick)



Brookhaven National Laboratory -- Boris Pritychenko et al.


Project: Maxwellian-Averaged Cross Sections from ENDF/B-VII.1

Approach:

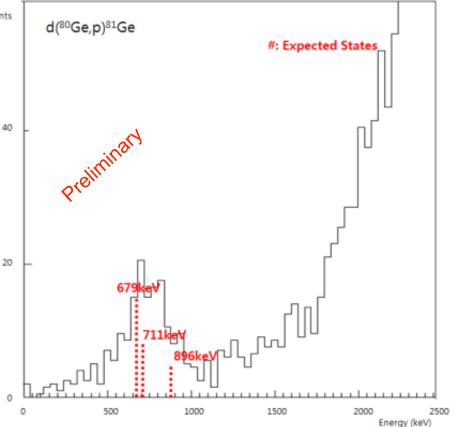
generate MACS from ENDF/B-VII.1 and UNCERTAINTIES via low-fidelity covariances ENDF/B-VII.1 • improve deficiencies in ENDF via comparisons with KADONIS database $\sigma N \sim constant$ for s-process Si) 100 **Results:** σ(mb)*N(/10⁶ Verification of famous "oN " curve for s-process nucleosynthesis with uncertainties 10 these can be used in Monte Carlo studies of heavy element creation in red giant stars Ŧ MACS are now integrated into ENDF development ! 100 120 140 160 180 200 Atomic Mass

Oak Ridge National Laboratory – S. Ahn et al.

Background:

neutron capture cross sections near closed neutron shells can significantly influence final abundances in r-process nucleosynthesis in supernovae

 ^{81}Ge near the closed N=50 shell, $^{80}Ge(n,\gamma)$ may be cru $^{\text{Counts}}$


However – no firm spin assignments of low-lyir ⁸¹Ge levels

partly based on the systematics of odd-mass N=49 isotones and from beta decay studies

need to confirm first & third three excited state: ... 679 keV -- $\frac{1}{2}$ * 879 keV -- $\frac{1}{2}$

This project:

⁸⁰Ge(d,p)⁸¹Ge in inverse kinematics was measured at HRIBF, ORNL.
Results are being analyzed and is the PhD thesis of Sunghoon Ahn (UTK)
Assessment of levels will be made in this analysis work

Argonne National Laboratory -- C. Nair, Filip Kondev [with US Naval Academy]

GAMMASPHERE

Å

Q1 Q2

Project: Decay Modes of ¹⁷⁹⁻¹⁸⁰TI

Background:

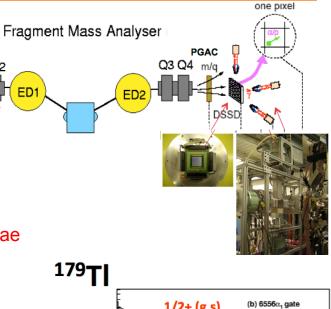
experimental information on Fission Barriers (FB) for nuclei far from stability is scarce

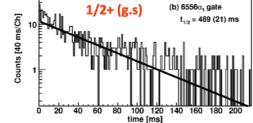
accurate knowledge of FBs is particularly important for neutron-rich nuclei that are located on the path of *r*-process nucleosynthesis

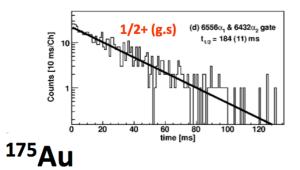
fission of these nuclei could terminate the *r*-process, can provide r-process seeds, & impacts final abundances synthesized in supernovae

important to study the decay properties of heavy neutron-rich nuclei, including beta-delayed fission

This study:


Measure alpha decays, alpha-gamma coincidences, ϵ + β ⁺ decays of ¹⁷⁹⁻¹⁸⁸⁰TI at ANL-ATLAS; precursor to future studies with n-rich nuclei


Results:


 ^{179}TI : measured decay correlations in both long lived $^{1}\!\!/_2$ + g.s. and short-lived 11/2- isomer were able to establish the "missing" ground state of 175Au

¹⁸⁰TI: measured a single decaying state

Future work: explore astrophysical implications of these decay schemes

Wick Haxton et al. use of ENDF cross sections

Project: cross sections from ENDF used for cold early r-process calculations

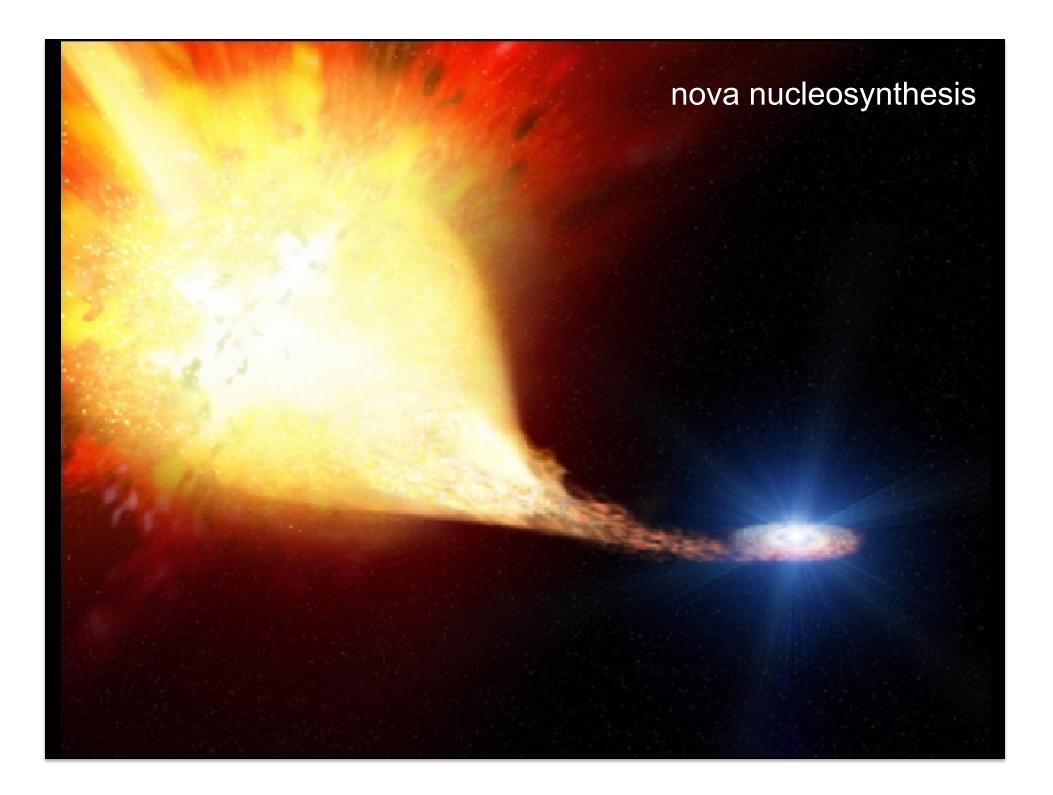
Background:

standard scenario for r-process is right above newly-formed neutron star in a core collapse supernova *alternate scenario*: in He shell of a core collapse supernova, driven by neutrino-induced reactions on ⁴He

This alternate was ruled out as a general r-process mechanism as it only operates at low metallicities and at low temperatures [early times] and cannot produce all the r-elements

This study:

Haxton et al. PRL106 (2011) 201104 revisit this scenario to see if it can be ONE POSSIBLE r-process mechanism


cross sections for ¹²C+n and ¹⁶O+n needed for this calculation, and taken from ENDF, JENDL ... $1/r^2$ of the inner He zone and NC ν channels in neutron production (which in the outer He zone lead to ⁷Li). One source of uncertainty comes from the ¹²C and ¹⁶O (n, γ) cross sections, which differ by factors of ~3 and 45 (10 and 160) at $T_8 \sim 0.85$ (3) between the Evaluated Nuclear Data File and the Japanese Evaluated Nuclear Data Library [17]. The differences reflect the energy range over which *s*-wave capture is assumed to dominate. Pending resolution of this discrepancy, parametric studies will be needed [16].

Results:

Discrepancy of cross sections for ¹²C+n and ¹⁶O+n from ENDF and JENDL lead to a **serious uncertainty** in evaluating the viability of this new scenario

Need to resolve this discrepancy

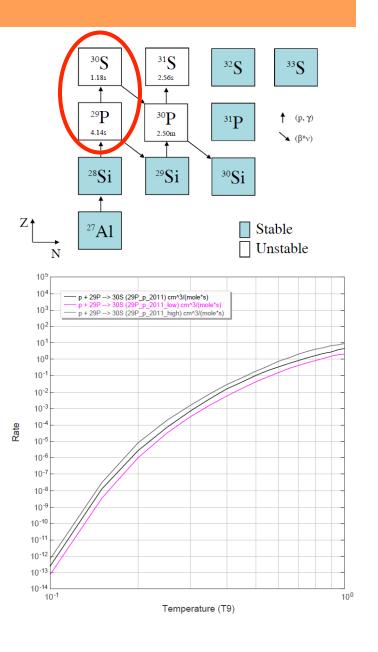
McMaster University -- K. Setoodehnia, D. Irvine, Alan Chen, Jun Chen

- Two reactions evaluated: ${}^{29}P(p,\gamma){}^{30}S$ and ${}^{30}P(p,\gamma){}^{31}S$
- Both closely tied to Alan Chen's nuclear astro research program
 - \bullet ²⁹P(p,γ)³⁰S, thesis project of Kiana Setoodehnia
 - studied ³⁰S levels of astrophysical interest via (*p*,*t*) and (³He, $n\gamma$)
 - discovered a new dominant state
 - Φ ³⁰P(p,γ)³¹S, thesis project of Dan Irvine
 - studied ³¹S levels of astrophysical interest via (*d*,*t*)
 - data analysis in progress
- Rates submitted using the Computational Infrastructure for Nuclear Astrophysics at nucastrodata.org
- Further update expected from the results of our group's research

McMaster

McMaster University --- K. Setoodehnia, D. Irvine, Alan Chen, Jun Chen

Project: Evaluation of ²⁹P(p,γ)³⁰S rate


The ²⁹Si and ³⁰Si abundances are important to understand nova nucleosynthesis, and they depend on the ²⁹P(p,γ)³⁰S rate

³⁰Si abundance increased via ²⁹P(p,γ)³⁰S(β⁺)³⁰P(β⁺)³⁰Si reactions

²⁹P(p,γ)³⁰S rate is uncertain due to poorly understood level structure in ³⁰S above ²⁹P+p threshold

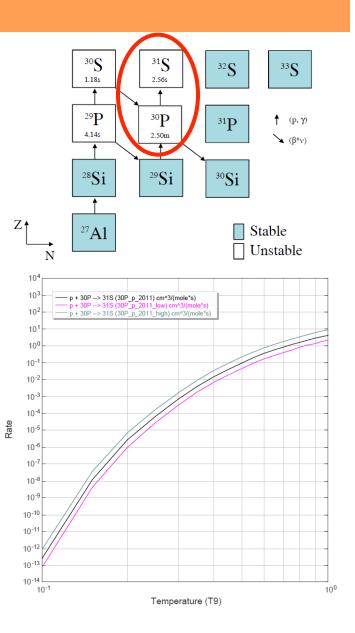
Rate dominated at Nova temperatures
 (0.1-0.4 GK) by two resonances at E_R=296 and
 412 keV with unknown strengths

Sp=4399(3) keV from Audi's compilations in 2011

McMaste University

McMaster University --- K. Setoodehnia, D. Irvine, Alan Chen, Jun Chen

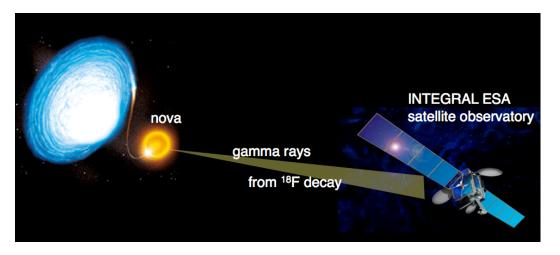
Project: Evaluation of ³⁰P(p,γ)³¹S rate


³⁰P(p,γ)³¹S rate strongly influences Si isotopic abundance ratios in presolar meteoric grains of possible nova origin

It destroys ³⁰P, bypassing production of ³⁰Si from ³⁰P(β⁺)³⁰Si

Large uncertainties in level parameters above the proton threshold still remain

Rate dominated by states up to about $E_x \sim 7$ MeV. Uncertainty is mainly from resonance strengths.


 Sp=6130.9(4) keV from new mass measurement by Kankainen et al. (2010), 6131.4(10) from Audi's compilation in 2011

Oak Ridge National Laboratory

Project: measurements & reaction assessments for nova nucleosynthesis

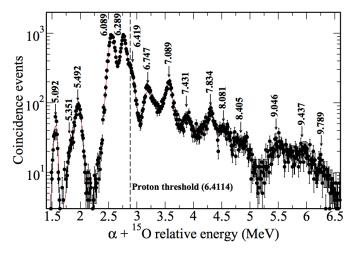


FIG. 1. (Color online) $\alpha + {}^{15}\text{O}$ coincidences versus relative energy in ${}^{19}\text{Ne}$. The shaded circles are experimental data while the red curves are the fit. Excitation energies in MeV are indicated.

¹⁸F + p burning:

A.S.Adekola et al., Phys.Rev. C **83**, 052801 (2011) *First proton-transfer study of* ¹⁸*F* + *p resonances relevant for novae*

¹⁸F produced in nova explosions, has a 2 hour decay that is a target of gamma ray astronomy

many direct and indirect studies of ¹⁸F + p burning in novae

proton transfer never investigated ...

at ORNL HRIBF, we measured (d,n) for the first time with radioactive ¹⁸F beam

nice results on strength of lowest lying resonances not accessible by direct measurements, included re-assessment of low-lying levels in ¹⁹Ne

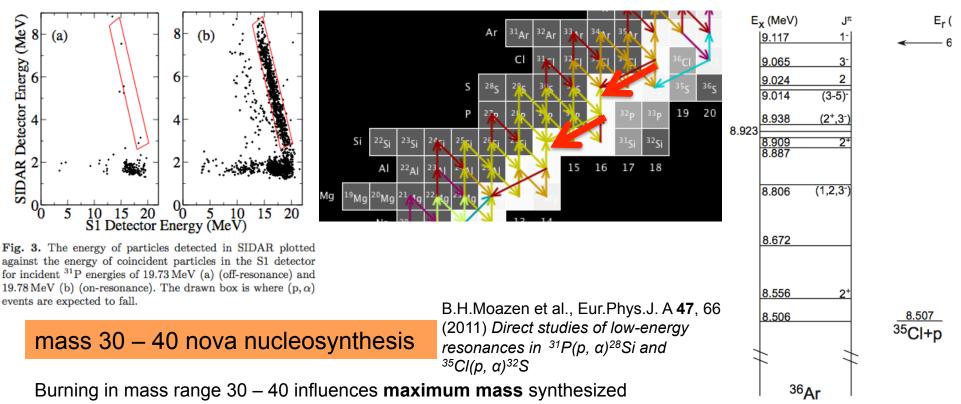
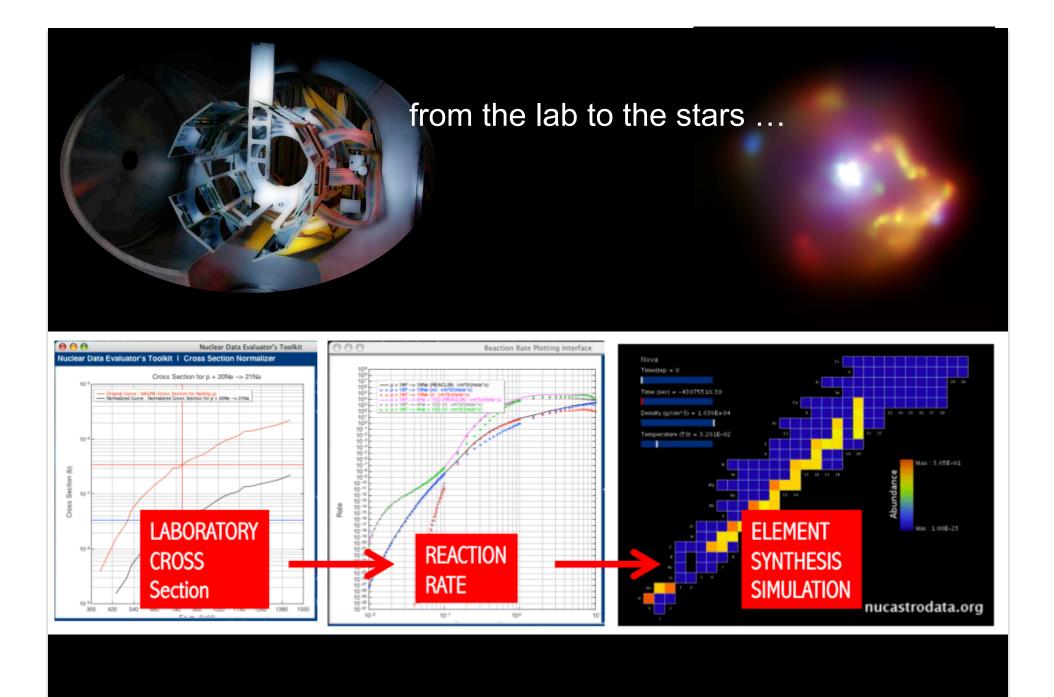

Oak Ridge National Laboratory

Fig. 7. The relevant excitation energy range in ³⁶Ar is along with an arrow indicating the resonance directly me in the present work. Excitation energies and spins are

from ref. [5].

Project: measurements & reaction assessments for nova nucleosynthesis


in nova outbursts

 (p,α) reactions direct mass flow to *lower* masses – a reaction *cycling*

recent measurements at ORNL on (p, α) on ³¹P and ³⁵Cl as prototypes for radioactive beam measurements at ReA3 at MSU

strengths of a number of resonances were lower than previously determined - resulting in less cycling

work includes assessments of levels in ³¹P + p and ³⁵Cl + p

Oak Ridge National Laboratory -- Michael Smith, Eric Lingerfelt, Caroline Nesaraja

Quantity Max

3.043 Quantity Min

-3.053

HFB14

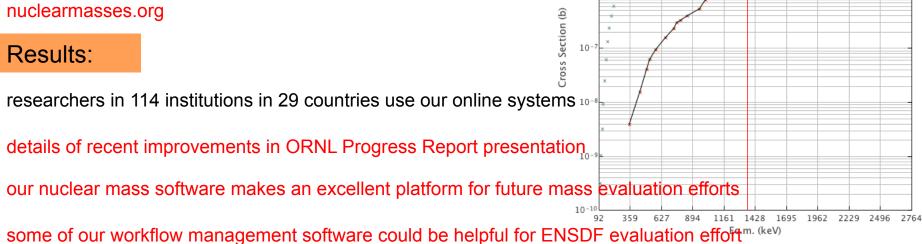
nuclearmasses.org

Curve 1 : 20nepg_test

Curve 2 : NON-SMOKER Cross Section for Ne20() Matched Cross Section for p + 20Ne --> 21Na

– AME2003 mass differences

Project: software systems for nuclear astrophysics research


Background:

nuclear information not easy to access, visualize, share, process into astrophysical models

not easy to determine astrophysical impact of new nuclear physics information

This study:

significant improvements in our unique on-line software suites for research in nuclear astrophysics and nuclear science nucastrodata.org / Computational Infrastructure for Nuclear Astrophysics

Closing Comments

there are really interesting astro-related projects carried out by USNDP institutions

some of your projects could possibly be extended or enhanced to have astrophysical implications

we would like to explore such possibilities with you !