Recent Activities & Initiatives in the ORNL Nuclear Data Program – USNDP 2010

Caroline D. Nesaraja, Michael S. Smith ORNL Physics Division

Activities

Nuclear Structure Data

A-chain Evaluations

Nuclear Astrophysics Data

 Evaluation and assessments of reactions critical for stellar explosion studies

(closely coupling research and data activities)

• Improve and expand functionality of the Computational Infrastructure for Nuclear Astrophysics and the Nuclear Masses software system

Nuclear Structure Data

EVALUATIONS

Responsibility: Actinide Evaluations A=241 – 249

A=152 evaluation in progress (Murray Martin)

10.7 M	19.4 M	45.0 M	35.7 H	3.11 H	333.5 D	351 Y	13.0
e	α	e			Ø	Q	
242Bk 7.0 M	243Bk 4.5 H	244Bk 4.35 H	245Bk 4.94 D	246Bk 1.80 D	247Bk 1380 Y	248Bk >9 Y	2491 330
e					α		
241Cm 32.8 D	242Cm 162.8 D	243Cm 29.1 Y	244Ст 18.1 Ү	245Cm 8500 T	246Ст 4760 Ү	247Ст 1.56E+7 Ү	2480 3.48E-
					Ø	α	α
240Am 50.8 H	241Am 432.6 ¥	242Am 16.02 H	243Am 7370 Y	244Am 10.1 H	245Am 2.05 H	246Am 39 M	247A 23.0
			α		β-	β-	β-
239Pu 24110 Y	240Pu 6561 Y	241Pu 14.290 Y	242Pu 3.75E+5 Y	243Pu 4.956 H	244Pu 8.00E+7 Y	245Pu 10.5 H	2461 10.8
Q			α		Q		β-

A=69 evaluation in progress (Caroline Nesaraja) * also for astrophysics

A=121 follow up on review (Murray Martin & Caroline Nesaraja)

A=125 reviewed (Murray Martin)

Close Coupling of Data Evaluation and Processing with Astrophysics Research at ORNL

⁶⁹Br Astrophysics Motivation: Properties of ⁶⁹Br essential for studying the rp-process waiting point nucleus ⁶⁸Se in X–ray burst

Waiting point nuclei:

S_= -785

keV

Nuclides along the rp process path that hinder or delay the abundance flow to heavier masses are called waiting point nuclei (⁶⁴Ge, ⁶⁸Se, ⁷²Kr ...)

Andrew M. Rogers. PhD Thesis, MSU. 2009

Direct method with lower

uncertainties and model independent.

Level structure of ⁶⁹Br can be constrained from:

•Experimental Data

•Known structure information of the mirror nuclei ⁶⁹Se

•Theoretical shell Model Calculation

Work in progress:

- include in ENSDF
- generate statistical model cross section for ${}^{68}Se(p,\gamma){}^{69}Br$
- convert to reaction rate with CINA
- perform post processing element synthesis X-Ray bursts calculations with new CINA rate

Nuclear Astrophysics Data

²⁶Si

Motivation: **Properties of ²⁶Si** levels important for the ²⁵Al(p,γ)²⁶Si reaction rate which affect the production of galatic ²⁶Al

D.W.Bardayan et al., 2002 & 2006

E_x	E_x ,	J^{π}
5914 ± 2^a	5927 ± 4	3+
6300 ± 4^{b}	6317 ± 7	$(2^{+})^{c}$
6380 ± 4^{b}	6386 ± 3	$(2^{+})^{c}$
6787 ± 4	6784 ± 3	3^{-}
7019 ± 10	7031 ± 5	$(0^+, 1^-)^d$
7160 ± 5	7157 ± 4	2^{+}
7425 ± 7^{b}	7439 ± 6	$(2^{+})^{c}$
7498 ± 4^{b}	7512 ± 8	$(2^{+})^{c}$
7687 ± 22	7672 ± 2	3^{-}
7900 ± 22	7875 ± 2	1-
8120 ± 20^{e}		$(1^-, 2^+)^e$
_	$(8166) \pm 7$	
8570 ± 30^{e}		$(1^-, 2^+)^e$
8700 ± 30^{e}	8682 ± 5	$(1^-, 2^+)^e$
-	$(9124) \pm 8$	
9170 ± 30^{e}		$(1^-, 2^+)^e$
-	$(9952) \pm 17$	

The ²⁸Si(p,t)²⁶Si^{*}(p) Reaction and Implications for the Astrophysical ²⁵Al(p,γ)²⁶Si Reaction Rate K.A. Chipps et al., Phys. Rev. C 82, 045803 (2010)

E_x (keV)	J^{π}	$B_p = \Gamma_p / (\Gamma_p + \Gamma_\gamma)$
5927	3^{+}	0.91 ± 0.10
6317 + 6386	2^{+}	0.88 ± 0.20
6784	3-	1.21 ± 0.24^{a}
7031 + 7157	2^{+}	1.04 ± 0.25
7439 + 7512	2^{+}	1.31 ± 0.27^{b}
7672	3^{-}	1.18 ± 0.23^{a}
7875	1-	1.11 ± 0.22^{a}

First measurement of proton decay branching ratios for unbound ²⁶Si

Computational Infrastructure for Nuclear Astrophysics

New Features since USNDP-2009 meeting

Rate Evaluation

 Data Harvester : collect information from a number of major international databases

- Element Synthesis Simulations
 - Element Synthesis Simulator: reaction rate sensitivity studies
 - Element Synthesis Manager: report information, copy and erase simulations
 - Element Synthesis Visualizer: sensitivity studies plotting interface of final abundance vs. rate

Nuclear Masses

nuclearmasses.org launched to aid research in nuclear masses and to help facilitate a proposed new effort in nuclear mass evaluations

New Features since USNDP-2009 meeting

• new mass compilation from Balraj Singh / McMaster Univ .

•generate table of data points

• uncertainty in masses can be entered , modified and visualized

Publications

Nucl. Data Sheets **111**, 897 (2010) C.D.Nesaraja, S.D.Geraedts, B.Singh. *Nuclear Data Sheets for A* = 58

Phys.Rev. C **82**, 045803 (2010) K.A.Chipps et al. The ²⁸Si(p,t)²⁶Si*(p) Reaction and Implications for the Astrophysical ²⁵Al(p,g)²⁶Si Reaction Rate

Phys.Rev. C **82**, 047302 (2010) K.Y. Chae et al. Spin assignments to excited states in ²²Na through a ²⁴Mg(p,³He)²²Na reaction measurement

Phys.Rev. C **81**, 065802 (2010) D. W. Bardayan et al. Inelastic ${}^{17}F(p, p){}^{17}F$ scattering at Ec.m.=3 MeV and the ${}^{14}O(\alpha, p){}^{17}F$ reaction rate

Nature (London) **465**, 454 (2010) K.L. Jones et al. *The magic nature of* ¹³²Sn *explored through the single-particle states of* ¹³³Sn

Selected Presentations

10th Int. Symp. Origins of Matter Evolution of Galaxies, Osaka, Japan, March 2010

"ORNL Radioactive Beams for Stellar Explosion Studies", M.S. Smith (invited)

"Bottlenecks and Waiting Points in Nucleosynthesis in X-ray bursts and Novae", M.S. Smith, T. Sunayama, W.R. Hix, E.J. Lingerfelt, C.D. Nesaraja (contributed)

"Nuclear Mass Visualization and Analysis at <u>nuclearmasses.org</u>", M.S. Smith, E.J. Lingerfelt, C.D. Nesaraja, H. Koura, and F.G. Kondev (contributed)

APS April Meeting 2010, Washington DC

Oral: Structure of 69Br and the rp process in X-ray bursts Caroline Nesaraja & Michael Smith

Oral: Nuclear Masses : Sharing, Visualization, and Analysis Tool at nuclearmasses.org M.S. Smith, E.J. Lingerfelt, <u>C. D. Nesaraja</u>, H.Koura & F. G. Kondev

Selected Presentations

ND 2010 International Conference on Nuclear Data for Science & Technology, Jeju Island, Korea

Invited Speaker (Plenary Session) Nuclear Data for Astrophysics Research: A new Online Paradigm Michael Smith

Poster:

Close Coupling of Data Evaluation and Processing with Astrophysics Reseach at ORNL Caroline Nesaraja, <u>Michael Smith</u>, Eric Lingerfelt & Kelly Chipps

Seminars

"Recent Progress in Nuclear Astrophysics at ORNL", <u>M.S. Smith</u>, Chinese Inst. Atomic Energy, Beijing, PR China, Sept. 2010 (invited)

"Impact of Nuclear Structure Physics in Nuclear Astrophysics", M.S. Smith, Liaoning Normal University, Dalian, PR China, Sept. 2010 (Invited)

Summary/ Future Work

Nuclear Structure/ Nuclear Astrophysics Data Evaluation and Assessments

Mass chain evaluation A=152 & A=69 (properties of ⁶⁹Br important for astrophysics)

Computational Infrastructure for Nuclear Astrophysics

- Implement a set of workflow tool for international collaboration in Nuclear Astrophysics
- Explore how work flow tools can be utilized in the broader Nuclear Data Community

Nuclear Masses

• Explore role of nuclearmasses.org in future mass evaluation efforts

Personnel & Funding

Scientific Permanent staff: 2 heads, USNDP funded 1.2 FTE

Scientific Temporary staff (Postdocs, long term visitors): 1 head, USNDP funded 0.15 FTE

Scientific External collaborators: many but none funded by USNDP

Technical/Support staff: 1 head, USNDP funded 0.5 FTE

New hires:

- none

Resigned/Retired: - none